Skip to main content
Log in

Synthesis and characterization of ZnO nanoparticles for modifying thermal and mechanical properties of industrial substrates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this experimental study, zinc oxide nanoparticles (ZnO-NPs) are synthesized using Moringa oleifera extract and calcined at 400 °C. These biologically synthesized ZnO-NPs were mixed in 1:1 proportion with organic (oil) and quasi-organic (varnish) binder separately. These mixtures were individually coated on three substrates: paper, wood, and fabric (P, W, and F). The effect of the coating of NPs on the mechanical and thermal properties of the substrate was observed. XRD investigation revealed the formation of a wurtzite structure of synthesized NPs with a crystallite size of 28 nm. The morphology of ZnO-NPs, uncoated and coated P, W, and F substrates were studied by field emission scanning electron microscopy (FESEM). Our studies reveal that adding ZnO-NPs improved the fire resistance property of the materials. It also shows a measurable increase in the materials’ tensile strength by adding ZnO-NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors declare that the data supporting the findings of this study are available within the paper.

References

  1. E. Inshakova, A. Inshakova, A. Goncharov, presented at the IOP Conference Series: Materials Science and Engineering, 2020

  2. S. Davis, Trends Biotechnol. 15(6), 217–224 (1997). https://doi.org/10.1016/S0167-7799(97)01036-6

    Article  CAS  Google Scholar 

  3. N.Z. Janković, D.L. Plata, Environ. Science: Nano. 6(9), 2697–2711 (2019). https://doi.org/10.1039/C9EN00322C

    Article  Google Scholar 

  4. A.S. Desai, A. Singh, Z. Edis, S. Haj Bloukh, P. Shah, B. Pandey, N. Agrawal, N. Bhagat, J. Funct. Biomaterials. 13(2), 54 (2022). https://doi.org/10.3390/jfb13020054

    Article  CAS  Google Scholar 

  5. E.R. Sadiku, O. Agboola, M.J. Mochane, V.O. Fasiku, S.J. Owonubi, I.D. Ibrahim, B.R. Abbavaram, W.K. Kupolati, T. Jayaramudu, C.A. Uwa, Research Anthology on Military and Defense Applications, Utilization, Education, and Ethics (IGI Global, 2021), pp. 323–356

  6. S.A. Abdel-Gawad, W.M. Osman, A.M. Fekry, Surf. Interfaces. 14, 314–323 (2019). https://doi.org/10.1016/j.surfin.2018.08.001

    Article  CAS  Google Scholar 

  7. G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron. 103, 113–129 (2018). https://doi.org/10.1016/j.bios.2017.12.031

    Article  CAS  Google Scholar 

  8. S. Otles, B.Y. Şahyar, Nanotechnology Applications in the Food Industry (CRC Press, Boca Raton, 2018), pp.97–106

    Book  Google Scholar 

  9. W. Chen, H. Chen, W. Li, J. Huang, H. Yu, J. Duh, S. Lan, T. Feng, Surf. Coat. Technol. 389, 12563610 (2020)

    Google Scholar 

  10. P.C. Ray, H. Yu, P.P. Fu, J. Environ. Sci. Health Part C 27(1), 1–35 (2009). https://doi.org/10.1080/10590500802708267

    Article  CAS  Google Scholar 

  11. I. Khan, K. Saeed, I. Khan, Arab. J. Chem. 12(7), 908–931 (2019). https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  12. F. Pacheco-Torgal, S. Jalali, Constr. Build. Mater. 25(2), 582–590 (2011). https://doi.org/10.1016/j.conbuildmat.2010.07.009

    Article  Google Scholar 

  13. H. Duan, D. Wang, Y. Li, Chem. Soc. Rev. 44(16), 5778–5792 (2015). https://doi.org/10.1039/C4CS00363B

    Article  CAS  Google Scholar 

  14. K.N. Thakkar, S.S. Mhatre, R.Y. Parikh, Nanomed.: Nanotechnol., Biol. Med. 6 (2), 257–262 (2010).

  15. A. Husen, M. Iqbal, Nanomaterials and Plant Potential: An Overview (Springer, Amsterdam, 2019)

    Book  Google Scholar 

  16. A. Sirelkhatim, S. Mahmud, A. Seeni, N.H.M. Kaus, L.C. Ann, S.K.M. Bakhori, H. Hasan, D. Mohamad, Nano-micro Lett. 7, 219–242 (2015). https://doi.org/10.1007/s40820-015-0040-x

    Article  CAS  Google Scholar 

  17. A.N. Papadopoulos, H.R. Taghiyari, Coatings. 9(12), 866 (2019). https://doi.org/10.3390/coatings9120866

    Article  CAS  Google Scholar 

  18. C.H. Suh, Y.-C. Jung, Y.S. Kim, J. Mech. Sci. Technol. 24, 2091–2098 (2010). https://doi.org/10.1007/s12206-010-0707-7

    Article  Google Scholar 

  19. I. Perelshtein, G. Applerot, N. Perkas, G. Guibert, S. Mikhailov, A. Gedanken, Nanotechnology. 19(24), 245705 (2008). https://doi.org/10.1088/0957-4484/19/24/245705

    Article  CAS  Google Scholar 

  20. Y.A. Molina, V.R. Tapia, E.B. Calva, Plasmonics. 11, 971–979 (2016). https://doi.org/10.1007/s11468-015-0131-z

    Article  CAS  Google Scholar 

  21. A. Mathiazhagan, R. Joseph, Int. J. Chem. Eng. Appl. 2(4), 225 (2011)

    CAS  Google Scholar 

  22. Y. Wong, C. Yuen, M. Leung, S. Ku, H. Lam, AUTEX Res. J. 6(1), 1–8 (2006)

    Google Scholar 

  23. R. Olar, Buletinul Institutului Politehnic din lasi. Sectia Constructii, Arhitectura. 57(4), 109 (2011)

    Google Scholar 

  24. M.J. Hanus, A.T. Harris, Prog. Mater. Sci. 58(7), 1056–1102 (2013). https://doi.org/10.1016/j.pmatsci.2013.04.001

    Article  CAS  Google Scholar 

  25. V.S. Chauhan, S.K. Chakrabarti, Cellul. Chem. Technol. 46(5), 389 (2012)

    CAS  Google Scholar 

  26. R.R. Devi, T.K. Maji, Wood Sci. Technol. 47, 1135–1152 (2013). https://doi.org/10.1007/s00226-013-0563-6

    Article  CAS  Google Scholar 

  27. H.J. Seo, S. Kim, W. Huh, K.-W. Park, D.R. Lee, D.W. Son, Y.-S. Kim, J. Therm. Anal. Calorim. 123, 1935–1942 (2016). https://doi.org/10.1007/s10973-015-4553-9

    Article  CAS  Google Scholar 

  28. R.R.A. Hassan, W.S. Mohamed, Appl. Phys. A 124, 1–10 (2018). https://doi.org/10.1007/s00339-018-1989-3

    Article  CAS  Google Scholar 

  29. N.F. Attia, M. Moussa, A.M. Sheta, R. Taha, H. Gamal, Prog. Org. Coat. 104, 72–80 (2017). https://doi.org/10.1016/j.porgcoat.2016.12.007

    Article  CAS  Google Scholar 

  30. I.S. Tania, M. Ali, Polymers. 13(16), 2701 (2021). https://doi.org/10.3390/polym13162701

    Article  CAS  Google Scholar 

  31. N. Bhagat, B. Pandey, Curr. Nanosci. 18(6), 726–732 (2022). https://doi.org/10.2174/1573413717666211118105842

    Article  CAS  Google Scholar 

  32. P. Scherrer, Nach Ges Wiss Gottingen. 2, 8–100 (1918)

    Google Scholar 

  33. J.I. Langford, A. Wilson, J. Appl. Crystallogr. 11(2), 102–113 (1978). https://doi.org/10.1107/S0021889878012844

    Article  CAS  Google Scholar 

  34. V. Uvarov, I. Popov, Mater. Charact. 85, 111–123 (2013). https://doi.org/10.1016/j.matchar.2013.09.002

    Article  CAS  Google Scholar 

  35. S. Saif, A. Tahir, T. Asim, Y. Chen, M. Khan, S.F. Adil, Saudi J. Biol. Sci. 26(7), 1364–1371 (2019). https://doi.org/10.1016/j.sjbs.2019.01.004

    Article  CAS  Google Scholar 

  36. N. Matinise, X. Fuku, K. Kaviyarasu, N. Mayedwa, M. Maaza, Appl. Surf. Sci. 406, 339–347 (2017). https://doi.org/10.1016/j.apsusc.2017.01.219

    Article  CAS  Google Scholar 

  37. J. Akintunde, T. Farai, M. Arogundade, J. Adeleke, Biochem. Biophys. Rep. 26, 100999 (2021). https://doi.org/10.1016/j.bbrep.2021.100999

    Article  CAS  Google Scholar 

  38. S. Pal, S. Mondal, J. Maity, R. Mukherjee, Int. J. Nanosci. Nanatechnol. 14(2), 111–119 (2018)

    Google Scholar 

  39. H.G. Yang, H.C. Zeng, J. Phys. Chem. B 108(11), 3492–3495 (2004). https://doi.org/10.1021/jp0377782

    Article  CAS  Google Scholar 

  40. O.M. El-Feky, E.A. Hassan, S.M. Fadel, M.L. Hassan, J. Cult. Herit. 15(2), 165–172 (2014). https://doi.org/10.1016/j.culher.2013.01.012

    Article  Google Scholar 

  41. I. Chauhan, S. Aggrawal, P. Mohanty, Environ. Science: Nano. 2(3), 273–279 (2015). https://doi.org/10.1039/C5EN00006H

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, ASD, VD and NB; methodology, ASD, VD and NB; software, ASD, AA and HP; validation, NB, HP and BP; formal analysis, ASD, AA, VD, NB, and BP; investigation, ASD, NB, AA and VD; resources, NB, HP and BP; data curation, ASD, NB, and VD; writing—original draft preparation, ASD, NB, AA, VD and BP; visualization, ASD, VD and NB; supervision, NB; project administration, NB; All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Neeru Bhagat.

Ethics declarations

Conflict of interest

The authors hereby declare that there is no conflict of interest between us.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, A.S., Ashok, A., Dabir, V.V. et al. Synthesis and characterization of ZnO nanoparticles for modifying thermal and mechanical properties of industrial substrates. J Mater Sci: Mater Electron 34, 1899 (2023). https://doi.org/10.1007/s10854-023-11292-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11292-y

Navigation