Skip to main content
Log in

Influence of oxygen vacancies on the lithium-doped Mn:ZnO thin films for improved NO2 gas-sensing applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, the \({(\rm{Zn}}_{0.97-x}{\rm{Li}}_{x}{\rm{Mn}}_{0.03})\rm{O}\) (\(x=0, 0.01, 0.03,\rm{ and }0.05\)) thin films were prepared on a glass substrate via the sol–gel spin coating technique to study the influence of lithium on Mn-doped ZnO thin films for structural, optical, electrical, morphological, chemical, and NO2 gas-sensing applications. According to the XRD analysis, all samples display a hexagonal wurtzite crystal structure. A FESEM analysis revealed that the incorporation of lithium into Mn-doped ZnO results in a smaller grain size with more voids than Mn-doped ZnO. Four-probe Hall measurements revealed the n-type conductivity on \({(\rm{Zn}}_{0.97-x}{\rm{Li}}_{\rm{x}}{\rm{Mn}}_{0.03})\rm{O}\) (\(x=0\rm{ and }0.01),\) whereas samples with (\(x=0.03\rm{ and }0.05\)) exhibited p-type conductivity, which was well explained. XPS and PL spectra confirmed the abundance of surface oxygen vacancies on the prepared sample. It is revealed that interaction between the defect states of lithium and manganese with inherent defect states of ZnO play a crucial role in carrier transfer for the gas-sensing process. In contrast to Mn-doped ZnO, \({(\rm{Zn}}_{0.96}{\rm{Li}}_{0.01}{\rm{Mn}}_{0.03})\rm{O}\) exhibits smaller grains and a ninefold gas sensitivity (62.01) toward 75 ppm of NO2 gas at 210 °C toward 75 ppm of NO2 gas with a rapid response (30 s) and recovery (125 s) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Data sharing does not apply to this article as no datasets were generated or analyzed during the current study.

References

  1. T. Tang, Z. Li, Y. Fen, H. Guang, X. Xing, Y. Li, J. Hazard. Mater. 451, 131184 (2023)

    Article  CAS  Google Scholar 

  2. X. Bai, H. Lv, Z. Liu, J. Chen, J. Wang, B. Sun, Y. Zhang, R. Wang, J. Hazard. Mater. 416, 8 (2021)

    Google Scholar 

  3. K. Suganthi, E. Vinoth, L. Sudha, P. Bharathi, M. Navaneethan, Sens. Actuators B 380, 133293 (2023)

    Article  CAS  Google Scholar 

  4. B.M.A. Qureshi, N.J. Shah, C.W. Hemmen, M.C. Thill, Am. J. Crit. Care 12, 147 (2016)

    Article  Google Scholar 

  5. N. Sui, P. Zhang, T. Zhou, T. Zhang, Sens. Actuators B 336, 129612 (2021)

    Article  CAS  Google Scholar 

  6. B. Sharma, A. Sharma, J. Myung, Sens. Actuators B 331, 129464 (2021)

    Article  CAS  Google Scholar 

  7. X. Wang, T. Wang, G. Si, Y. Li, S. Zhang, X. Deng, X. Xu, Sens. Actuators B 302, 127165 (2020)

    Article  CAS  Google Scholar 

  8. H. Bai, H. Guo, J. Wang, Y. Dong, B. Liu, Z. Xie, F. Guo, D. Chen, R. Zhang, Y. Zheng, Sens. Actuators B 337, 129783 (2021)

    Article  CAS  Google Scholar 

  9. M.M. Gomaa, M.H. Sayed, V.L. Patil, M. Boshta, P.S. Patil, J. Alloys Compd. 885, 160908 (2021)

    Article  CAS  Google Scholar 

  10. M. Sik, M. Young, A. Mirzaei, H. Kim, S. Kim, S. Baek, D. Won, C. Jin, K. Hyoung, Appl. Surf. Sci. 568, 150910 (2021)

    Article  Google Scholar 

  11. T. Hsueh, S. Wu, Sens. Actuators B 329, 129201 (2021)

    Article  CAS  Google Scholar 

  12. S.D. Lokhande, M.B. Awale, V.D. Mote, J. Mater. Sci. Mater. Electron. 33, 25063 (2022)

    Article  CAS  Google Scholar 

  13. M.S.G. Selvan, K.K.M. Karunakaran, S.U.P. Baskaran, J. Electron. Mater. 51, 2586 (2022)

    Article  Google Scholar 

  14. V.S. Kamble, Y.H. Navale, V.B. Patil, N.K. Desai, S.N. Vajekar, J. Mater. Sci. Mater. Electron. 32, 26503 (2021)

    Article  CAS  Google Scholar 

  15. I.Y. Habib, A.A. Tajuddin, H.A. Noor, C.M. Lim, A.H. Mahadi, N.T.R.N. Kumara, Sci. Rep.. Rep. 1, 8 (2019)

    Google Scholar 

  16. M. Liu, Y. Shen, J. Mater. Sci. Mater. Electron. 34, 1 (2023)

    Article  CAS  Google Scholar 

  17. J. Zhao, C. Xie, L. Yang, S. Zhang, G. Zhang, Z. Cai, Appl. Surf. Sci. 330, 126 (2015)

    Article  CAS  Google Scholar 

  18. R.N. Mariammal, K. Ramachandran, Mater. Res. Express 8, 79 (2018)

    Google Scholar 

  19. K.K. Jasmi, T.A. Johny, V.S. Siril, V. Kumar, K.N. Madhusoodanan, Bull. Mater. Sci. 0123456789, 1 (2022)

    Google Scholar 

  20. D.K. Dubey, D.N. Singh, S. Kumar, C. Nayak, P. Kumbhakar, S.N. Jha, D. Bhattacharya, A.K. Ghosh, S. Chatterjee, RSC Adv. 6, 22852 (2016)

    Article  CAS  Google Scholar 

  21. C.W. Zou, H.J. Wang, M.L. Yi, M. Li, C.S. Liu, L.P. Guo, D.J. Fu, T.W. Kang, Appl. Surf. Sci. 256, 2453 (2010)

    Article  CAS  Google Scholar 

  22. C.W. Zou, L.X. Shao, L.P. Guo, D.J. Fu, T.W. Kang, J. Cryst. GrowthCryst. Growth 331, 44 (2011)

    Article  CAS  Google Scholar 

  23. N. Rajamanickam, R.N. Mariammal, S. Rajashabala, K. Ramachandran, J. Alloys Compd.. Alloys Compd. 614, 151–164 (2014)

    Article  CAS  Google Scholar 

  24. M.K.S.V. Kumar, J. Mater. Sci. Mater. Electron. 123, 1–9 (2016)

    Google Scholar 

  25. T.A. Johny, V. Kumar, J. Mater. Sci. Mater. Electron.. Mater. Sci. Mater. Electron. 27, 1456 (2014)

    Article  Google Scholar 

  26. K.K. Jasmi, T.A. Johny, V.S. Siril, K.N. Madhusoodanan, J. Sol-Gel Sci. Technol.. Sol-Gel Sci. Technol. 8, 1–12 (2023)

    Google Scholar 

  27. M.M. Elfaham, A.M. Mostafa, E.A. Mwafy, J. Phys. Chem. Solids 154, 110089 (2021)

    Article  CAS  Google Scholar 

  28. R. Nisha, Development of semiconductor metal oxide gas sensors for the detection of NO2 and H2S gases. Material Science, Cochin University of Science and Technology (2013)

  29. M.S. Choi, M.Y. Kim, A. Mirzaei, H.S. Kim, S.I. Kim, S.H. Baek, D. Won Chun, C. Jin, K.H. Lee, Appl. Surf. Sci.. Surf. Sci. 568, 150910 (2021)

    Article  Google Scholar 

  30. V.L. Patil, S.A. Vanalakar, N.L. Tarwal, A.P. Patil, T.D. Dongale, J.H. Kim, P.S. Patil, Sens. Actuators A 299, 111611 (2019)

    Article  CAS  Google Scholar 

  31. C. Rajeevgandhi, S. Bharanidharan, T. Jayakumar, N. Shailaja, P. Anand, Solid State Commun.Commun. 371, 115256 (2023)

    Article  CAS  Google Scholar 

  32. B. Gap, M. Zno, A. Khaleq, M. Alsmadi, B. Salameh, M. Shatnawi, J. Phys. Chem. C 124, 29 (2020)

    Google Scholar 

  33. M.R. Islam, M. Rahman, S.F.U. Farhad, J. Podder, Surf. Interfaces 16, 120 (2019)

    Article  CAS  Google Scholar 

  34. D.E. Motaung, I. Kortidis, G.H. Mhlongo, M.-M. Duvenhage, H.C. Swart, G. Kiriakidis, S.S. Ray, RSC Adv. 6, 31 (2016)

    Article  Google Scholar 

  35. S. Rezaie, Z.G. Bafghi, N. Manavizadeh, Int. J. Hydrogen Energy. J. Hydrogen Energy 45, 27 (2020)

    Google Scholar 

  36. S.A.V. Vhanalkar, V.L. Patil, S.M. Patil, S.B. Dhavale, T.D. Dongale, P.S. Patil, J. Mater. Nanosci. 9, 13 (2022)

    CAS  Google Scholar 

  37. D.C. Reynolds, D.C. Look, B. Jogai, D.C. Reynolds, D.C. Look, B. Jogai, J. Appl. Phys. 6189, 1 (2001)

    Google Scholar 

  38. M.E. Ashebir, G.M. Tesfamariam, G.Y. Nigussie, T.W. Gebreab, J. Nanomater.Nanomater. 3(4), 93 (2018)

    Google Scholar 

  39. M. Shaheera, K.G. Girija, M. Kaur, V. Geetha, A.K. Debnath, R.K. Vatsa, K.P. Muthe, S.C. Gadkari, Chem. Phys. Lett.Lett. 758, 137951 (2020)

    Article  CAS  Google Scholar 

  40. C.H. Park, S.B. Zhang, S.H. Wei, Phys. Rev. B. Rev. B 66, 1 (2002)

    Google Scholar 

  41. K. Rudra, Y.K. Prajapati, Ceram. Int. 46, 8 (2020)

    Article  Google Scholar 

  42. C. Belkhaoui, N. Mzabi, H. Smaoui, Mater. Res. Bull. 111, 70–79 (2018)

    Article  Google Scholar 

  43. Q. Shao, S. Qi, Y. Chen, O. Lam, Y. Yi, S. Foo, S.M. Ng, J. Sol-Gel Sci. Technol. 77, 240 (2016)

    Article  CAS  Google Scholar 

  44. S. Fabbiyola, L.J. Kennedy, A.A. Dakhel, M. Bououdina, J.J. Vijaya, T. Ratnaji, J. Mol. Struct.Struct. 1109, 89–96 (2016)

    Article  CAS  Google Scholar 

  45. S. Pramanik, S. Mondal, A.C. Mandal, S. Mukherjee, S. Das, T. Ghosh, R. Nath, M. Ghosh, P.K. Kuiri, J. Alloys Compd. 849, 156684 (2020)

    Article  CAS  Google Scholar 

  46. K.K. Jasmi, T.A. Johny, V.S. Siril, N. Madhusoodanan, Ind. J. Phys. 8, 1–10 (2023)

    Google Scholar 

  47. V.S. Kamble, R.K. Zemase, R.H. Gupta, B.D. Aghav, S.A. Shaikh, J.M. Pawara, Opt. Mater. (Amst). 131, 112706 (2022)

    Article  CAS  Google Scholar 

  48. V.S. Kamble, Y.H. Navale, V.B. Patil, N.K. Desai, S.T. Salunkhe, J. Mater. Sci. Mater. Electron. 32, 2219 (2021)

    Article  CAS  Google Scholar 

  49. R.S. Ganesh, V.L. Patil, E. Durgadevi, M. Navaneethan, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Chem. Phys. Lett.. Phys. Lett. 15, 136725 (2019)

    Article  Google Scholar 

  50. N. Sun, Q. Tian, W. Bian, X. Wang, H. Dou, C. Li, Appl. Surf. Sci. 614, 89 (2023)

    Google Scholar 

  51. W. An, X. Wu, X.C. Zeng, J. Phys. Chem. 112, 5747 (2008)

    CAS  Google Scholar 

  52. M.J.S. Spencer, I. Yarovsky, J. Phys. Chem. C 3, 10881 (2010)

    Article  Google Scholar 

  53. M.G. Wardle, J.P. Goss, P.R. Briddon, Phys. Rev. B 71, 15 (2005)

    Article  Google Scholar 

  54. L. Zhang, Q. Fang, Y. Huang, K. Xu, P.K. Chu, F. Ma, Q. Fang, Y. Huang, K. Xu, P.K. Chu, F. Ma, Anal. Chem. 90, 9821 (2018)

    Article  CAS  Google Scholar 

  55. J. Han, A.M.R. Senos, P.Q. Mantas, Mater. Chem. Phys. 75, 117 (2002)

    Article  CAS  Google Scholar 

  56. M. Liu, A.H. Kitai, P. Mascher, J. Lumin.Lumin. 54, 35 (1992)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KKJ contributed to Writing and preparation of original draft, sample synthesis, and Characterization. Dr. TAJ contributed to Resources, Methodology, Conceptualization, and Supervision. VSS contributed to Characterization. Dr. KNM contributed to Resources and Supervision. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to K. K. Jasmi.

Ethics declarations

Competing interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasmi, K.K., Johny, T.A., Siril, V.S. et al. Influence of oxygen vacancies on the lithium-doped Mn:ZnO thin films for improved NO2 gas-sensing applications. J Mater Sci: Mater Electron 34, 1951 (2023). https://doi.org/10.1007/s10854-023-11282-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11282-0

Navigation