Skip to main content
Log in

Redox electrochemistry of electrodes tuned with dimethyl ferrocene based on Co–NC–Pd nanogeometry: an impedimetric sensor for NADH sensing

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cobalt N-doped carbon (Co–NC) and palladium (Pd) nanoparticles were used to modify the CPE, which served as a platform for sensing the NADH. The use of this sensor offered the advantages of improved electrochemical stability, simple fabrication, and low cost. Here, we present a straightforward, accurate, and sensitive approach for measuring NADH in neutral PBS utilizing an electrochemically altered carbon paste electrode. The synthesized materials have been characterized using HR-SEM, TEM, and XPS. Electroanalytical approaches like Cyclic voltammetry, Amperometry titration, and EIS have been carried out to check out the activity of the modified electrode. The modified electrode becomes more electroactive towards NADH oxidation due to the interaction of Co–NC/Pd with dimethyl ferrocene, with a notable reduction in the peak potential difference occurring despite electrode fouling. The sensor has a high electrocatalytic response and a detection limit of 2 µM throughout a broad linear range up to 5 to 1250 µM with a correlation coefficient of 0.989.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The corresponding author may provide the datasets produced and/or analyzed during the current work upon reasonable request.

References

  1. M. Shivakumar, S. Manjunatha, M.S. Dharmaprakash, Curr. Res. Green Sustain. Chem. 4, 100150 (2021)

    Article  CAS  Google Scholar 

  2. G. Weng, X. Zhao, J. Zhao, J. Li, J. Zhu, J. Zhao, Sens Actuators B Chem 299, 126982 (2019)

    Article  CAS  Google Scholar 

  3. S. Immanuel, R. Sivasubramanian, J. Phys. Chem. Solids 161, 110471 (2022)

    Article  CAS  Google Scholar 

  4. L. Wang, J. Zhang, B. Kim, J. Peng, S.N. Berry, Y. Ni, D. Su, J. Lee, L. Yuan, Y.-T. Chang, J. Am. Chem. Soc. 138, 10394 (2016)

    Article  CAS  Google Scholar 

  5. P. Manusha, S. Senthilkumar, J. Mater. Sci. 33, 8576 (2022)

    CAS  Google Scholar 

  6. N.F. Atta, S.A. Abdel Gawad, E.H. El-Ads, A.R.M. El-Gohary, A. Galal, Sens Actuators B 251, 65 (2017)

    Article  CAS  Google Scholar 

  7. Y. Mie, Y. Yasutake, M. Ikegami, T. Tamura, Sens Actuators B 288, 512 (2019)

    Article  CAS  Google Scholar 

  8. W. Xie, A. Xu, E.S. Yeung, Anal. Chem. 81, 1280 (2009)

    Article  CAS  Google Scholar 

  9. M. Chu, Z. Bai, D. Zhu, W. Chen, G. Yang, J. Xin, H. Ma, H. Pang, L. Tan, X. Wang, J. Electroanal. Chem. 907, 116083 (2022)

    Article  CAS  Google Scholar 

  10. M. Wang, X. Kan, Analyst 143, 5278 (2018)

    Article  CAS  Google Scholar 

  11. K.K. Maurya, K. Singh, M. Malviya, J. Appl. Electrochem. (2023)

  12. A.S. Agnihotri, A. Varghese, M. Nidhin, Appl. Surf. Sci. Adv. 4, 100072 (2021)

    Article  Google Scholar 

  13. J.M. George, A. Antony, B. Mathew, Microchim. Acta 185, 1–26 (2018)

    Article  CAS  Google Scholar 

  14. P. Liang, H. Yu, B. Guntupalli, Y. Xiao, ACS Appl. Mater. Interfaces 7, 15023 (2015)

    Article  CAS  Google Scholar 

  15. H. Jaegfeldt, T. Kuwana, and G. Johanssont, Electrochemical Stability of Catechols with a Pyrene Side Chain Strongly Adsorbed on Graphite Electrodes for Catalytic Oxidation of Dihydronicotinamide Adenine Dinucleotide (1983).

  16. G.P. Keeley, A. O’Neill, M. Holzinger, S. Cosnier, J.N. Coleman, G.S. Duesberg, Phys. Chem. Chem. Phys. 13, 7747 (2011)

    Article  CAS  Google Scholar 

  17. C. Shan, H. Yang, D. Han, Q. Zhang, A. Ivaska, L. Niu, Biosens. Bioelectron. 25, 1504 (2010)

    Article  CAS  Google Scholar 

  18. Y. Liu, R. Landick, S. Raman, ACS Synth. Biol. 8, 264 (2019)

    Article  Google Scholar 

  19. R.D. Nagarajan, P. Murugan, A.K. Sundramoorthy, ChemistrySelect 5, 14643 (2020)

    Article  CAS  Google Scholar 

  20. A. Koyappayil, H.T. Kim, M.H. Lee, Sens Actuators B 327, 128887 (2021)

    Article  CAS  Google Scholar 

  21. L. Zhu, R. Yang, X. Jiang, D. Yang, Electrochem. Commun. 11, 530 (2009)

    Article  CAS  Google Scholar 

  22. S. Shahrokhian, R. Salimian, S. Rastgar, Mater. Sci. Eng. C 34, 318 (2014)

    Article  CAS  Google Scholar 

  23. P. Manusha, S. Yadav, J. Satija, S. Senthilkumar, Sens Actuators B 347, 130649 (2021)

    Article  CAS  Google Scholar 

  24. X.H. Pham, C.A. Li, K.N. Han, B.C. Huynh-Nguyen, T.H. Le, E. Ko, J.H. Kim, G.H. Seong, Sens Actuators B 193, 815 (2014)

    Article  CAS  Google Scholar 

  25. S.H. Lim, J. Wei, J. Lin, Q. Li, J. KuaYou, Biosens. Bioelectron. 20, 2341 (2005)

    Article  CAS  Google Scholar 

  26. B. Singh, N. Bhardwaj, V.K. Jain, V. Bhatia, Sens Actuators A Phys 220, 126 (2014)

    Article  CAS  Google Scholar 

  27. B. Wang, K. Chen, G. Wang, X. Liu, H. Wang, J. Bai, Nanoscale 11, 968 (2019)

    Article  CAS  Google Scholar 

  28. A. Chen, C. Ostrom, Chem. Rev. 115, 11999 (2015)

    Article  CAS  Google Scholar 

  29. Y. Xiong, Y. Xia, Adv. Mater. 19, 3385 (2007)

    Article  CAS  Google Scholar 

  30. K. Białas, D. Moschou, F. Marken, P. Estrela, Microchim. Acta 189, 172 (2022)

    Article  Google Scholar 

  31. K. Murugesan, T. Senthamarai, A.S. Alshammari, R.M. Altamimi, C. Kreyenschulte, M.M. Pohl, H. Lund, R.V. Jagadeesh, M. Beller, ACS Catal 9, 8581 (2019)

    Article  CAS  Google Scholar 

  32. W. Yi, Z. Li, C. Dong, H.W. Li, J. Li, Microchem. J. 148, 774 (2019)

    Article  CAS  Google Scholar 

  33. R. Zhang, M. Tahir, S. Ding, M.A. Qadeer, H. Li, Q.X. Zeng, R. Gao, L. Wang, X. Zhang, L. Pan, J.J. Zou, ACS Appl. Energy Mater. 3, 2323 (2020)

    Article  CAS  Google Scholar 

  34. K. Zhu, C. Jin, Z. Klencsár, A.S. Ganeshraja, J. Wang, Catalysts 7, 138 (2017)

    Article  Google Scholar 

  35. S. Liang, C. Liang, Materials 12, 6474–6479 (2019)

    Google Scholar 

  36. B. Fall, D.D. Sall, M. Hémadi, A.K.D. Diaw, M. Fall, H. Randriamahazaka, S. Thomas, Sens. Actuators Rep. 5, 100136 (2023)

    Article  Google Scholar 

  37. H. Elsawy, B.M. Thamer, A. Sedky, M.H. El-Newehy, Mater Chem Phys 297, 127361 (2023)

    Article  CAS  Google Scholar 

  38. S. Chen, K. Shang, X. Gao, X. Wang, Biosens. Bioelectron. 211, 114376 (2022)

    Article  CAS  Google Scholar 

  39. T. Anusha, K.S. Bhavani, J.V. Shanmukh Kumar, P.K. Brahman, R.Y.A. Hassan, Bioelectrochemistry 143, 107935 (2022)

    Article  CAS  Google Scholar 

  40. H.S. Magar, R.Y.A. Hassan, A. Mulchandani, Sensors 21, 6578 (2021)

    Article  CAS  Google Scholar 

  41. R. Aghajari, A. Azadbakht, Anal. Biochem. 547, 57 (2018)

    Article  CAS  Google Scholar 

  42. C.E. Banks, R.G. Compton, Analyst 130, 1232 (2005)

    Article  CAS  Google Scholar 

  43. P. Jain, B. Chakma, S. Patra, P. Goswami, Anal. Chim. Acta 956, 48 (2017)

    Article  CAS  Google Scholar 

  44. L. Meng, A.P.F. Turner, W.C. Mak, Biosens. Bioelectron. 120, 115 (2018)

    Article  CAS  Google Scholar 

  45. M. Sahin, E. Ayranci, Electrochim. Acta 166, 261 (2015)

    Article  CAS  Google Scholar 

  46. A.R. Marlinda, S. Sagadevan, N. Yusoff, A. Pandikumar, N.M. Huang, O. Akbarzadeh, M.R. Johan, J. Alloys Compd. 847, 156552 (2020)

    Article  CAS  Google Scholar 

  47. S.N. Prashanth, K.C. Ramesh, J. Seetharamappa, Int. J. Electrochem. 2011, 1 (2011)

    Article  Google Scholar 

  48. M. Elancheziyan, K. Theyagarajan, V.K. Ponnusamy, K. Thenmozhi, S. Senthilkumar, Micro Nano Eng. 15, 100133 (2022)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks the Indian Institute of Technology (B.H.U.), Varanasi for providing TAship (Teaching Assistantship) for carrying out this research work. All authors thank to the Head of the Department and Prof. P.C. Pandey for providing an electrochemical workstation facility in the Department.

Funding

The authors  declare that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

KS contributed to conceptualization, material preparation, data collection, formal analysis, visualization, and writing the original draft. CS and KKM have done data collection, validation, writing, and MM contributed to project administration, resources, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Manisha Malviya.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1997 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, K., Singh, C., Maurya, K.K. et al. Redox electrochemistry of electrodes tuned with dimethyl ferrocene based on Co–NC–Pd nanogeometry: an impedimetric sensor for NADH sensing. J Mater Sci: Mater Electron 34, 1898 (2023). https://doi.org/10.1007/s10854-023-11257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11257-1

Navigation