Skip to main content
Log in

Improved structural, electronic, and electrochemical properties of MoS2/graphene oxide composite for Li-ion batteries applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We describe a facile approach to fabricate MoS2 and graphene oxide (GO) composites using single-step hydrothermal method to achieve excellent electrochemical properties for energy storage applications, like lithium-ion batteries. Supportive 2D structure of MoS2 material provides direct path for the electron’s flow. MoS2 and graphene oxide (GO) composites provide large surface area for intercalation of ions into/out of active materials due to their layered morphology and also minimize the path for electron transfer. The morphology of samples is studied under XRD, SEM, and TEM. The investigation confirms the formation of composites and increment in crystallinity with doping of MoS2 on graphene oxide (GO) surface. Electrochemical properties are characterized by cyclic voltammogram (CV). As a result, composite MoS2 + GO with 3% weight ratio of graphene oxide (GO) gives best cyclic stability of 740 mAh/g at low current density 100 mA/g just after 160 cycles presenting excellent improvement in electrochemical performance as electrode material in lithium-ion batteries. The structural, electronic, and optical calculations of MoS2/graphene heterostructure have been performed using the density-functional theory. The MoS2/Graphene heterostructure reveals the zero band gap due to high electronic conductivity. The calculated absorption and optical conductivity find to be high in optical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request or as per journal policy.

References

  1. J. Ye, L. Ma, W. Chen, Y. Ma, F. Huang, C. Gao, J.Y. Lee, J. Mater. Chem. A 3, 33 (2015)

    Google Scholar 

  2. S. Wang, B. Liu, G. Zhi, X. Gong, J. Zhang, Appl. Surf. Sci. 458, 954 (2018)

    Article  CAS  Google Scholar 

  3. W. Qin, Y. Li, Y. Teng, T. Qin, J. Colloid Interface Sci 512, 826 (2018)

    Article  CAS  Google Scholar 

  4. H. Liu, L. Liu, M. Yi, Z. Shen, S. Liang, X. Zhang, S. Ma, Chem. Eng. J. 311, 293 (2017)

    Article  CAS  Google Scholar 

  5. Y. Piao, Y. Bae, C.-Y. Seong, S. Yoo, S.-K. Park, Energy Technol. 5, 1200 (2017)

    Article  Google Scholar 

  6. M.H. Yang, S. Ko, J.S. Im, B.G. Choi, J. Power Sources 288, 76 (2015)

    Article  CAS  Google Scholar 

  7. X. Wang, C. Tong, X. Zhou, W. Zhu, L. Fu, Appl. Surf. Sci. 495, 14354 (2019)

    Google Scholar 

  8. F. Xiong, Z. Cai, L. Qu, P. Zhang, Z. Yuan, O.K. Asare, W. Xu, C. Lin, L. Mai, ACS Appl. Mater. Interface 7, 12625 (2015)

    Article  CAS  Google Scholar 

  9. V.H. Pham, K.H. Kim, D.W. Jung, K. Singh, E.S. Oh, J.S. Chung, J. Power Sources 244, 280 (2013)

    Article  CAS  Google Scholar 

  10. D.H. Youn, C. Jo, J.Y. Kim, J. Lee, J.S. Lee, J. Power Sources 295, 228 (2015)

    Article  CAS  Google Scholar 

  11. G. Liu, Y. Feng, Y. Li, M. Qin, H. An, W. Hu, W. Feng, Part. Part. Syst. Charact. 32, 489 (2015)

    Article  CAS  Google Scholar 

  12. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965)

    Article  Google Scholar 

  13. P. Hohenberg, W. Kohn, Inhomog. Electron Gas Phys. Rev. B 136, B864 (1964)

    Google Scholar 

  14. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  CAS  Google Scholar 

  15. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  Google Scholar 

  16. R. Fletcher, C.M. Reeves, Comput. J. 7(2), 149–154 (1964)

    Article  Google Scholar 

  17. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  18. S. Elbasuney, G.S. El-Sayyad, M. Yehia, S.K. Abdel, J. Mater. Sci. Mater. Electron. 31, 20805 (2020)

    Article  CAS  Google Scholar 

  19. C.G. Broyden, The convergence of a class of double-rank minimization algorithms. Inst. Math. Appl. 6, 76–90 (1970)

    Article  Google Scholar 

  20. H. Li, K. Yu, C. Li, Z. Tang, B. Guo, X. Lei, H. Fu, Z. Zhu, Sci. Rep. 5, 18730 (2015)

    Article  CAS  Google Scholar 

  21. X. Zhou, Z. Wang, W. Chen, L. Ma, D. Chen, J.Y. Lee, J. Power Sources 251, 264 (2014)

    Article  CAS  Google Scholar 

  22. N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, J. Chem. Educ. 95, 197 (2018)

    Article  CAS  Google Scholar 

  23. L. Maa, G. Huang, W. Chen, Z. Wang, J. Ye, H. Li, D. Chen, J.Y. Lee, J. Power Sources 264, 262 (2014)

    Article  Google Scholar 

  24. K. Lellala, Int. J. Eng. Sci. Res. Technol. 3, 988 (2014)

    CAS  Google Scholar 

  25. K. Chang, W. Chen, Am. Chem. Soc. 6, 4720 (2011)

    Google Scholar 

  26. T.D. Chen, W.H. Yan, J.G. Xu, J.H. Li, G.P. Zhang, J. Alloys Compd. 793, 541–551 (2019)

    Article  CAS  Google Scholar 

  27. M. Kram, L.J. Liu, Y. Liu, L.F. Ma, H. Lv, M. Ullah, L. He, H.Y. Wu, R.H. Wang, K.Y. Shi, J. Mater. Chem. A 7, 14602 (2019)

    Article  Google Scholar 

  28. Y. Liu, Y. Zhao, L. Jiao, J. Chen, J. Mater. Chem A 2, 13109 (2014)

    Article  CAS  Google Scholar 

  29. G. Liu, Y. Feng, Y. Li, M. Qin, H. An, W. Hu, W. Feng, Part. Part. Syst. Charact. 32, 489 (2014)

    Article  CAS  Google Scholar 

  30. L. Maa, X. Zu, L. Xu, X. Xu, L. Zhang, W. Chen, Electrochim. Acta 167, 39 (2015)

    Article  Google Scholar 

  31. R.M. Arif Khalil, F. Hussain, A.M. Rana, M. Imran, G. Murtaza, Physica E Low-dimens Syst. Nanostruct. 106, 338 (2019)

    Article  CAS  Google Scholar 

  32. M. Hilal, B. Rashid, S.H. Khan, A. Khan, Mater. Chem. Phys. 184, 41 (2016)

    Article  CAS  Google Scholar 

  33. K. Xiong, J. Robertson, S.J. Clark, Appl. Phys. Lett. 89, 022907 (2006)

    Article  Google Scholar 

  34. A.H. Reshak, Z. Charifi, H. Baaziz, J. Solid State Chem. 183, 1290 (2010)

    Article  Google Scholar 

  35. M. Bass, Handbook of Optics (McGraw-Hill, New York, 1995)

    Google Scholar 

  36. P. Sharma, S.C. Katyal, J. Phys. D Appl. Phys. 40, 2115 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is highly acknowledged by Higher Education of Pakistan for providing opportunity under HEC Post-Doctorate fellowship Program Phase-III via Ref: 3-1/PDFP/HEC/2022(B-3)/2453/02 and Research supporting program at King Saud University, Riadh, for funding this work under project number (RSPD2023R699)

Funding

This study was funded by Higher Education Commision, Pakistan (No. Ref: 3-1/PDFP/HEC/2022(B-3)/2453/02) and Deanship of Scientific Research, King Saud University (No. RSPD2023R699).

Author information

Authors and Affiliations

Authors

Contributions

NAN contributed to supervision. AS contributed to visualization. FH, RMAK, and SMA contributed to computational work, revision, and editing of the manuscript. UM contributed to writing and editing of the manuscript. AI contributed to XPS analysis and reviewing of the manuscript. DHG contributed to editing and providing facilities for revision suggested by Reviewer.

Corresponding author

Correspondence to Niaz Ahmad Niaz.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. The manuscript has not been published previously and is not under consideration for publication. It is also stated that the work is original. The publication is approved by all authors and tacitly or explicitly by the responsible authorities where the work was carried out. If accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright holder. In addition, the authors have no conflicts of interest nor data fabrication or reproducibility concerns and plagiarism.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niaz, N.A., Shakoor, A., Hussain, F. et al. Improved structural, electronic, and electrochemical properties of MoS2/graphene oxide composite for Li-ion batteries applications. J Mater Sci: Mater Electron 34, 1942 (2023). https://doi.org/10.1007/s10854-023-11212-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11212-0

Navigation