Skip to main content
Log in

Investigation of temperature-dependent dielectric and transport characteristics of Y0.95Ba0.05Mn0.95Zr0.05O3 manganite ceramic

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study builds upon our previous research, which focused on investigating the effects of Ba and Zr ions doping on the structural, optical, and dielectric properties of the YMnO3 manganite system at room temperature. This study examines the influence of Ba and Zr ions on the dielectric and transport properties of YMnO3 (Y0.95Ba0.05Mn0.95Zr0.05O3) ceramic sample with temperature. The formation of the sample phase was verified by FT-IR spectroscopy. XPS study reveals the oxidation state of Mn-ion as well as the oxygen vacancies that exist in the prepared sample. The temperature-dependent dielectric constant of the ceramic sample indicates dielectric anomalies at ~ 562 K and ~ 572 K for 1 kHz and 100 kHz, suggesting the relaxation of doubly ionized oxygen vacancies. Jonscher's power law is used to investigate the variation of AC conductivity with frequency at different temperatures, while the transport phenomenon and conduction mechanism are explained through the variation of electrical modulus with frequency. A complex impedance study of the prepared sample has been done to understand its electrical behavior. The P-E hysteresis loop analysis of the prepared sample showed its improved ferroelectric behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data available on request from the authors.

References

  1. N.A. Spaldin, R. Ramesh, Nat. Mater. 18, 203 (2019)

    Article  CAS  Google Scholar 

  2. V. Nagarajan, C.S. Ganpule, A. Roytburd, R. Ramesh, Nanoscale phenomena in ferroelectric thin films. Integr. Ferroelectr. (2002). https://doi.org/10.1080/10584580210862

    Article  Google Scholar 

  3. J. Shukla, S. Bisen, M. Khan, A. Mishra, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  4. N. Sharma, A. Das, C.L. Prajapat, S.S. Meena, J. Magn. Magn. Mater. 348, 120 (2013)

    Article  CAS  Google Scholar 

  5. M. Maisnam, Integr. Ferroelectr. 202, 104 (2019)

    Article  CAS  Google Scholar 

  6. F. Wan, X. Lin, X. Bai, X. Han, K. Song, J. Zheng, C. Cao, J. Mater. Sci. Mater. Electron. 27, 3082 (2016)

    Article  CAS  Google Scholar 

  7. F. Wan, L. Li, X. Bai, Y. Wang, L. Gao, J. Li, and C. Cao, J. Mater. Sci. Mater. Electron. 33, 17361 (2022)

  8. J. Shukla, A. Mishra, Mater. Today Proc. 46, 2189 (2021)

    Article  CAS  Google Scholar 

  9. K.S. Sivaraj, M.R. Anantharaman, Mater. Technol. 36, 159 (2021)

    Article  CAS  Google Scholar 

  10. L.P. Chanu, S. Phanjoubam, J. Mater. Sci. Mater. Electron. 33, 6107 (2022)

    Article  CAS  Google Scholar 

  11. M. Coşkun, O. Polat, F.M. Coşkun, Z. Durmuş, M. Çağlar, A. Turut, Mater. Sci. Semicond. Process. 91, 281 (2019)

    Article  Google Scholar 

  12. J. Shukla, M.D. Varshney, A. Mishra, Mater. Today Proc. 47, 652 (2020)

    Article  Google Scholar 

  13. D. Karoblis, A. Zarkov, E. Garskaite, K. Mazeika, D. Baltrunas, G. Niaura, A. Beganskiene, A. Kareiva, Sci. Rep. 11, 1 (2021)

    Article  Google Scholar 

  14. P. Paul, A.K. Rajarajan, A.K. Debnath, R. Rao, T.V. Chandrasekhar Rao, J. Magn. Magn. Mater. 503, 1 (2020)

    Google Scholar 

  15. M. Muneeswaran, J.W. Jang, B.C. Choi, J.H. Jeong, N.V. Giridharan, J. Mater. Sci. Mater. Electron. 28, 16788 (2017)

    Article  CAS  Google Scholar 

  16. Y. Zhao, Y. Rao, B. Luo, C. Chen, H. Xing, L. Niu, J. Wang, K. Jin, J. Phys. Chem. C 120, 22318 (2016)

    Article  CAS  Google Scholar 

  17. D. Dhayanithi, M. Muneeswaran, N.V. Giridharan, Ferroelectrics 518, 103 (2017)

    Article  CAS  Google Scholar 

  18. J.M. Patete, J. Han, A.L. Tiano, H. Liu, M.G. Han, J.W. Simonson, Y. Li, A.C. Santulli, M.C. Aronson, A.I. Frenkel, Y. Zhu, S.S. Wong, J. Phys. Chem. C 118, 21695 (2014)

    Article  CAS  Google Scholar 

  19. R. Das, P. Kumar, R.N.P. Choudhary, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  20. M.C. Sekhar, N.V. Prasad, Ferroelectrics 345, 45 (2006)

    Article  CAS  Google Scholar 

  21. M. Wang, T. Wang, S. Song, M. Ravi, R. Liu, S. Ji, Materials (Basel). 10, 1 (2017)

    Article  Google Scholar 

  22. M. Kumar, R. J. Choudhary, and D. M. Phase, AIP Conf. Proc. 1661, 1 (2015)

  23. S. Hajra, S. Sahoo, M. De, P.K. Rout, H.S. Tewari, R.N.P. Choudhary, J. Mater. Sci. Mater. Electron. 29, 1463 (2018)

    Article  CAS  Google Scholar 

  24. A. Shukla, R.N.P. Choudhary, Curr. Appl. Phys. 11, 414 (2011)

    Article  Google Scholar 

  25. A. Durán, G. Guzmán, C. I. Ochoa-Guerrero, C. Herbert, R. Escudero, F. Morales, and R. Escamilla, J. Appl. Phys. 125, 0 (2019)

  26. P. Chakraborty, S. Basu, Mater. Chem. Phys. 259, 124053 (2021)

    Article  CAS  Google Scholar 

  27. B. Deka, S. Ravi, A. Perumal, D. Pamu, Ceram. Int. 43, 1323 (2017)

    Article  CAS  Google Scholar 

  28. J. Shukla and A. Mishra, J. Supercond. Nov. Magn. 34, 451 (2021)

  29. S. Hajra, N. Pradhani, R.N.P. Choudhary, S. Sahoo, Process. Appl. Ceram. 13, 24 (2019)

    Article  CAS  Google Scholar 

  30. M. K. Shamim, S. Sharma, S. Sinha, and E. Nasreen, J. Adv. Dielectr. 07, 1750020 (2017)

  31. K. Chandrakanta, R. Jena, P. Pal, M.F. Abdullah, S.R. Mohapatra, S.D. Kaushik, A.K. Singh, J. Mater. Sci. Mater. Electron. 31, 15875 (2020)

    Article  CAS  Google Scholar 

  32. K. Verma, A. Kumar, D. Varshney, J. Alloys Compd. 526, 91 (2012)

    Article  CAS  Google Scholar 

  33. B. Dhanalakshmi, B.C. Sekhar, K.V. Vivekananda, B.S. Rao, B.P. Rao, P.S.V.S. Rao, Appl. Phys. A Mater. Sci. Process. 126, 1 (2020)

    Article  Google Scholar 

  34. M. Kumar, S. Shankar, S. Kumar, O.P. Thakur, A.K. Ghosh, Phys. Lett. A 381, 379 (2017)

    Article  CAS  Google Scholar 

  35. I.C.M.B.N. Hamdaoui, M.O.K. Farah, J. Supercond. Nov. Magn. 36, 759 (2023)

    Article  Google Scholar 

  36. N. Zarrin, S. Husain, A. Somvanshi, M. Fatema, W. Khan, Appl. Phys. A Mater. Sci. Process. 127, 1 (2021)

    Article  Google Scholar 

  37. M.K. Shamim, S. Sharma, S. Sinha, E. Nasreen, J. Adv. Dielectr. 7, 1 (2017)

    Google Scholar 

  38. S. Sharma, M. Kumar, G. Srinet, J. M. Siqueiros, and O. R. Herrera, Ceram. Int. 47, 6834 (2021)

  39. P. Saxena and A. Mishra, J. Solid State Chem. 301, 122364 (2021)

  40. V. Kumar, A. Gaur, U. Kumar, J. Magn. Magn. Mater. 384, 241 (2015)

    Article  CAS  Google Scholar 

  41. G. Dixit, P. Kumar, P. Negi, K. Asokan, Ferroelectrics 516, 74 (2017)

    Article  CAS  Google Scholar 

  42. W. Sotero, A.F. Lima, M.V. Lalic, J. Alloys Compd. 649, 285 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the following individuals for their valuable contributions to this research. Dr. Pratibha Sharma from the School of Chemical Sciences is acknowledged for providing the FT-IR measurement facility. Dr. R. J. Choudhary and Mr. Bharadwaj from UGC-DAE-CSR Indore are acknowledged for providing the dielectric measurement facility. Dr. V. R. Reddy from DAE-CSR Indore is acknowledged for providing the PE measurement facility. Finally, Dr. Gautam from Indus-2, BL-14, and RRCAT is acknowledged for providing the XPS measurement facility. We gratefully acknowledge Mrs. Anisha Jain and Mrs. Shivani K. Kapoor for their valuable contributions to this manuscript.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

JS: investigation, formal analysis, writing—original draft. PS: data curation, writing—review and editing. VNR: conceptualization, writing—review and editing. AM: supervision, resources, writing—review and editing.

Corresponding author

Correspondence to Jyoti Shukla.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, J., Saxena, P., Rai, V.N. et al. Investigation of temperature-dependent dielectric and transport characteristics of Y0.95Ba0.05Mn0.95Zr0.05O3 manganite ceramic. J Mater Sci: Mater Electron 34, 1776 (2023). https://doi.org/10.1007/s10854-023-11203-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11203-1

Navigation