Skip to main content
Log in

Li4Ti5O12 prepared by Sr-doped for Li-ion batteries with enhanced electrochemical performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Li4Ti5O12 (LTO) is considered as a new anode material with great potential because of its “zero strain” performance. To further improve the electrochemical behavior, Sr-doped LTO was synthesized via a facile hydrothermal method. The Sr2+ with bigger radius integrated into LTO did not change the origin crystal morphology of pure Li4Ti5O12 but attenuate the layered structure. XRD results testified that the lattice parameter of doped materials increases with the doping amount. EDS mapping further demonstrated the homogeneous distribution of strontium. Electrochemical tests show that Li3.975Sr0.025Ti5O12 presents optimal electrochemical properties. It possesses the highest initial discharge capacity of 215 mAh/g, while the pristine LTO just owns 163 mAh/g at 0.2 C. Li3.975Sr0.025Ti5O12 also delivers superior rate performance and cycling stability. It has a specific capacity retention of 80.02% at 10 C for 500 cycles, much higher than the 66.06% of pristine LTO. The thin and layered structure and increased electrical conductivity synergically improve the electrochemical performance of the doped material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding authors.

References

  1. W.Z. Liu, Y.J. Liu, Z.Q. Yang et al., Flexible solar cells based on foldable silicon wafers with blunted edges. Nature. 617, 717–723 (2023)

    Article  CAS  Google Scholar 

  2. S. Z-Ajabshir, M. Emsaki, G. Hosseinzadeh, Innovative construction of a novel lanthanide cerate nanostructured photocatalyst for efficient treatment of contaminated water under sunlight. J. Colloid Interface Sci. 619, 1–13 (2022)

    Article  Google Scholar 

  3. A. Zonarsaghar, M.M. Kamazani, S. Z-Ajabshir, Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. Inter J. Hydrogen Energy. 47(8), 5403–5417 (2022)

    Article  CAS  Google Scholar 

  4. J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature. 414, 359–367 (2011)

    Article  Google Scholar 

  5. H. Ge, L. Chen, W. Yuan et al., Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries. J. Power Sources. 297, 436–441 (2015)

    Article  CAS  Google Scholar 

  6. G.N. Zhu, H.J. Liu, J.H. Zhuang et al., Carbon-coated nano-sized Li4Ti5O12 nanoporous micro-sphere as anode material for high-rate lithium-ion batteries. Energ. Environ. Sci. 4(10), 4016–4022 (2011)

    Article  CAS  Google Scholar 

  7. L. Wang, F. Wang, J. Zhu, X. Zhang, Y. Tang, X. Wang, Synthesis and electrochemical performance of three-dimensional ordered hierarchically porous Li4Ti5O12 for high performance lithium ion batteries. Ceram. Int. 44(2), 1296–1303 (2018)

    Article  CAS  Google Scholar 

  8. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243 (2011)

    Article  CAS  Google Scholar 

  9. K.T. Nam, D.W. Kim, P.J. Yoo, C.Y. Chiang, N. Meethong, P.T. Hammond, Y.M. Chiang, A.M. Belcher, Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science. 312, 885–888 (2006)

    Article  CAS  Google Scholar 

  10. M.M. Thackeray, K. Amine, Li4Ti5O12 spinel anodes. Nat. Energy. 6, 683 (2021)

    Article  CAS  Google Scholar 

  11. M. Lu, H. Yang, Y. Zhang et al., Novel insights into the charge/discharge characteristics of spherical porous Li4Ti5O12 co-coated with carbon and metal. J. Power Sources. 349, 52–56 (2017)

    Article  CAS  Google Scholar 

  12. L. Zheng, X. Wang, Y. Xia, S. Xia, E. Metwalli, B. Qiu, Scalable in situ synthesis of Li4Ti5O12/carbon nanohybrid with super small Li4Ti5O12 nanoparticles homogeneously embedded in carbon matrix. ACS Appl. Mater. Inter. 10(3), 2591–2602 (2018)

    Article  CAS  Google Scholar 

  13. Z. Yao, X. Xia, C.A. Zhou, Y. Zhong, Y. Wang, S. Deng, Smart construction of integrated CNTs/Li4Ti5O12 core/shell arrays with superior high-rate performance for application in lithium‐ion batteries. Adv. Sci. 5(3), 1700786 (2018)

    Article  Google Scholar 

  14. H. Gu, F. Chen, C. Liu, J. Qian, M. Ni, Scalable fabrication of core-shell structured Li4Ti5O12/PPy particles embedded in N-doped graphene networks as advanced anode for lithium-ion batteries. J. Power Sources. 369, 42–49 (2017)

    Article  CAS  Google Scholar 

  15. Z. Yao, H. Yin, L. Zhou, G. Pan, Y. Wang, X. Xia, Ti3+ self-doped Li4Ti5O12 anchored on N‐doped carbon nanofiber arrays for ultrafast lithium‐ion storage. Small 15(50), 1905296 (2019)

    Article  CAS  Google Scholar 

  16. L. Zhang, Y. Qu, J. Huang, X. Feng, Correction: memory-effect-induced electrochemical oscillation of an Al-doped Li4Ti5O12 composite in Li-ion batteries. Chem. Commun. 55(64), 9568–9568 (2019)

    Article  CAS  Google Scholar 

  17. X. Bai, B. Zhang, G.Z. Jiang, J.P. Han, N. Lun, Y.X. Qi, Effective enhancement in rate capability and cyclability of Li4Ti5O12 enabled by coating lithium magnesium silicate. Electrochim. Acta. 295, 891–899 (2019)

    Article  CAS  Google Scholar 

  18. J.W. Choi, D. Aurbach, Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1(4), 1–16 (2016)

    Article  Google Scholar 

  19. L. Zhao, Y.S. Hu, H. Li, Z. Wang, Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li‐ion batteries. Adv. Mater. 23(11), 1385–1388 (2011)

    Article  CAS  Google Scholar 

  20. Z. Zhang, G. Li, H. Peng, Hierarchical hollow microspheres assembled from N-doped carbon coated Li4Ti5O12 nanosheets with enhanced lithium storage properties. J. Mater. Chem. A 1(48), 15429–15434 (2013)

    Article  CAS  Google Scholar 

  21. Y. He, A. Muhetaer, J. Li, F. Wang, C. Liu, Q. Li, Ultrathin Li4Ti5O12 nanosheet based hierarchical microspheres for high-rate and long‐cycle life Li‐Ion batteries. Adv. Energy Mater. 7(21), 1700950 (2017)

    Article  Google Scholar 

  22. Y. Cai, Y. Huang, W. Jia, Y. Zhang, X. Wang, Y. Guo, Two-dimensional dysprosium-modified bamboo-slip-like lithium titanate with high-rate capability and long cycle life for lithium-ion batteries. J. Mater. Chem. A 4(45), 17782–17790 (2016)

    Article  CAS  Google Scholar 

  23. S. Zhao, M.M. Zhang, Z.H. Wang, X.C. Xian, Enhanced high-rate performance of Li4Ti5O12 microspheres/multiwalled carbon nanotubes composites prepared by electrostatic self-assembly. Electrochim. Acta. 276, 73–80 (2018)

    Article  CAS  Google Scholar 

  24. W. Wang, B. Jiang, W.Y. Xiong et al., A nanoparticle Mg-doped Li4Ti5O12 for high rate lithium-ion batteries. Electrochim. Acta. 114, 198–204 (2013)

    Article  CAS  Google Scholar 

  25. H.L. Zhao, Y. Li, Z.M. Zhu, J. Lin, Z.H. Tian, R.L. Wang, Structural and electrochemical characteristics of Li4–xAlxTi5O12 as anode material for lithium-ion batteries. Electrochim. Acta 53, 7079–7083 (2008)

    Article  CAS  Google Scholar 

  26. Y.Q. Ge, H. Jiang, K. Fu, C.H. Zhang, J.D. Zhu, C. Chen, Y. Lu, Y.P. Qiu, X.W. Zhang, Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. J. Power Sources. 272, 860–865 (2014)

    Article  CAS  Google Scholar 

  27. C.B. Hyun, D.-J. Lee, Y.-J. Kwon, S.-T. Park, Study of the electrochemical properties of Li4Ti5O12 doped with Ba and Sr anodes for lithium-ion secondary batteries. J. Kor Chem. Soc. 47, 638–642 (2010)

    Google Scholar 

  28. C.X. Qiu, Z.Z. Yuan, L. Liu, N. Ye, J.C. Liu, Sol-gel preparation and electrochemical properties of La-doped Li4Ti5O12 anode material for lithium-ion battery. J. Solid State Electrochem. 17, 841–847 (2013)

    Article  CAS  Google Scholar 

  29. Y.Y. Zhang, C.M. Zhang, Y. Lin, D.B. Xiong, D. Wang, X.Y. Wu, D.N. He, Influence of Sc3+ doping in B-site on electrochemical performance of Li4Ti5O12 anode materials for lithium-ion battery. J. Power Sources. 250, 50–57 (2014)

    Article  CAS  Google Scholar 

  30. S. Saxena, A. Sil, Role of calcination atmosphere in vanadium doped Li4Ti5O12 for lithium ion battery anode material. Mater. Res. Bull. 96, 449–457 (2017)

    Article  CAS  Google Scholar 

  31. Q. Liang, N. Cao, Z.H. Song, X.J. Gao, L.N. Hou, T.R. Guo, X. Qin, Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries. Electrochim. Acta. 251, 407–414 (2017)

    Article  CAS  Google Scholar 

  32. D.M. Wu, Y.P. Cheng, Enhanced high-rate performance of sub-micro Li4Ti4.95Zn0.05O12 as anode material for lithium-ion batteries. Ionics. 19, 395–399 (2013)

    Article  CAS  Google Scholar 

  33. W.Y. Chen, S.J. Kuang, Z.T. Liu, H.K. Fu, Q.Y. Yun, D.X. Xu, H. Hu, X.Y. Yu, Y doped Li4Ti5–xYxO12 with Y2Ti2O7 surface modification anode materials: superior rate capability and ultralong cyclability for half/full lithium-ion batteries. J. Alloys Compd. 835, 155327 (2020)

    Article  CAS  Google Scholar 

  34. X.L. Zhang, G.R. Hu, Z.D. Peng, Preparation and effects of Mo-doped on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery. J. Inorg. Mater. 26, 443–448 (2011)

    Google Scholar 

  35. J.P. Feng, Y.L. Wang, Ce-doped Li4Ti5O12/C nanoparticles embedded in multiwalled carbon nanotube network as a high-rate and long cycle-life anode for lithium-ion batteries application. Ceram. Int. 42, 19172–19178 (2016)

    Article  CAS  Google Scholar 

  36. H. Yan, D. Zhang, X. Duo, X. Sheng, A review of spinel lithium titanate (Li4Ti5O12) as electrode material for advanced energy storage devices. Ceram. Int. 47(5), 5870–5895 (2021)

    Article  CAS  Google Scholar 

  37. X. Ji et al., In situ Sr2+-doped spinel LiNi0.5Mn1.5O4 cathode material for Li-ion batteries with high electrochemical performance and its impact on morphology. Ceram. Int. 47(22), 32043–32052 (2021)

    Article  CAS  Google Scholar 

  38. A. Subramania, N. Angayarkanni, T. Vasudevan, Synthesis of nano-crystalline LiSrxMn2–xO4 powder by a novel sol–gel thermolysis process for Li-ion polymer battery. J. Power Sources 158, 1410–1413 (2006)

    Article  CAS  Google Scholar 

  39. G.T.-K. Fey, V. Subramanian, J.-G. Chen, Electrochemical performance of Sr2+-doped LiNi0.8Co0.2O2 as a cathode material for lithium batteries synthesized via a wet chemistry route using oxalic acid. Mater. Lett. 52, 197–202 (2002)

    Article  CAS  Google Scholar 

  40. H.B. Wu, S. Chang, X.L. Liu et al., Sr-doped Li4Ti5O12 as the anode material for lithium-ion batteries. Solid State Ionics. 232, 13–18 (2013)

    Article  CAS  Google Scholar 

  41. Y.Q. Wang, L. Gu, Y.G. Guo, H. Li, X.Q. He, S. Tsukimoto, Y.C. Ikuhara, L.J. Wan, Rutile-TiO2 nanocoating for a high-rate Li4Ti5O12 anode of a lithium-ion battery. J. Am. Chem. Soc. 134, 7874–7879 (2012)

    Article  CAS  Google Scholar 

  42. D. Damien, B. Ilias, J.W. Ma et al., Template-assisted synthesis of high packing density SrLi2Ti6O14 for use as anode in 2.7-V lithium-ion battery. J. Power Sources. 196(5), 2871–2874 (2011)

    Article  Google Scholar 

  43. I. Koseva, J.P. Chaminade, P. Gravereau et al., A new family of isostructural titanates, MLi2Ti6O14 (M = Sr, Ba, Pb). J. Alloy Compd. 389, 47–54 (2005)

    Article  CAS  Google Scholar 

  44. Q.Y. Zhang, C.L. Zhang, B. Li, S.F. Kang, X. Li, Y.G. Wang, Preparation and electrochemical properties of Ca-doped Li4Ti5O12 as anode materials in lithium-ion battery. Electrochim. Acta. 98, 146–152 (2013)

    Article  CAS  Google Scholar 

  45. L. Wang, Y.M. Zhang, H.Y. Guo et al., Structural and electrochemical characteristics of Ca-doped flower-like Li4Ti5O12 motifs as high-rate anode materials for lithium-ion batteries. Chem. Mater. 30(3), 671–684 (2018)

    Article  Google Scholar 

  46. Y. Cao, P. Tang, S. Li et al., High energy storage performance of Sr-doped lanthanum titanate flexible self-supporting film for all-solid-state supercapacitor application. J. Mater. Sci. 56, 13243–13258 (2021)

    Article  CAS  Google Scholar 

  47. A.J. Wei, J.P. Mu, R. He, X. Bai, X.H. Li, L.H. Zhang, X. Zhang, Y.J. Wang, Z.F. Liu, Enhanced electrochemical performance of Li4Ti5O12 anode material by LaF3 surface modification for lithium-ion batteries. J. Phys. Chem. Solid 169, 110871 (2022)

    Article  CAS  Google Scholar 

  48. S. Nie, C.S. Li, H.R. Peng et al., Ti3+ self-doped Li4Ti5O12 nanosheets as anode materials for high performance lithium-ion batteries. RSC Adv. 5(30), 23278–23282 (2015)

    Article  CAS  Google Scholar 

  49. F. Zhao, P. Xue, H. Ge et al., Na-doped Li4Ti5O12 as an anode material for sodium-ion battery with superior rate and cycling performance. J. Electrochem. Society. 163(5), A690 (2016)

    Article  CAS  Google Scholar 

  50. F. Li, M. Zeng, J. Li et al., Preparation and electrochemical performance of Mg-doped Li4Ti5O12 nanoparticles as anode materials for lithium-ion batteries. Int. J. Electrochem. Sci. 10, 10445–10453 (2015)

    Article  CAS  Google Scholar 

  51. Z. Zhang, L. Cao, J. Huang et al., Hydrothermal synthesis of Zn-doped Li4Ti5O12 with improved high rate properties for lithium ion batteries. Ceram. Int. 39(6), 6139–6143 (2013)

    Article  CAS  Google Scholar 

  52. Q.Y. Zhang, M.G. Verde, J.K. Seo et al., Structural and electrochemical properties of Gd-doped Li4Ti5O12 as anode material with improved rate capability for lithium-ion batteries. J. Power Sources. 280, 355–362 (2015)

    Article  CAS  Google Scholar 

  53. H. Song, T.-G. Jeong, S.-W. Yun et al., An upper limit of Cr-doping level to retain zero-strain characteristics of Li4Ti5O12 anode material for Li-ion batteries. Sci. Rep. 7, 43335 (2017)

    Article  Google Scholar 

  54. L.N. Hou, X. Qin, X.J. Gao et al., Zr-doped anode materials with high specific capacity for lithium-ion batteries. J. Alloy Compd. 774, 38–45 (2019)

    Article  CAS  Google Scholar 

  55. D.Z. Kong, W.N. Ren, Y.S. Luo et al., Scalable synthesis of graphene-wrapped Li4Ti5O12 dandelion-like microspheres for lithium-ion batteries with excellent rate capability and long-cycle life. J. Mater. Chem. A 2(47), 20221–20230 (2014)

    Article  CAS  Google Scholar 

  56. J. Gong, S. Yan, Y. Lang et al., Effect of Cr3+ doping on morphology evolution and electrochemical performance of LiNi0.5Mn1.5O4 material for Li-ion battery. J. Alloy Compd. 859, 157885 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (52063005), Science and Technology Support Project of Guizhou Province (2021/488), Guizhou Province High-level Innovative Talents Training Project (2016/5667). Science and Technology Support Project of Guizhou Province (2023/356).

Author information

Authors and Affiliations

Authors

Contributions

KH: writing—original draft, experimental operation. TC: writing—reviewing, investigation, data curation. HW: supervision. DZ: supervision. JS: review and editing, supervision. JG: funding acquisition, provision of study materials.

Corresponding authors

Correspondence to Jiling Song or Jianbing Guo.

Ethics declarations

Conflict of interest

The authors have claimed that the work reported in this article will not generate conflicts of interest or economic disputes among them.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 306.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Chen, T., Wu, H. et al. Li4Ti5O12 prepared by Sr-doped for Li-ion batteries with enhanced electrochemical performance. J Mater Sci: Mater Electron 34, 1747 (2023). https://doi.org/10.1007/s10854-023-11182-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11182-3

Navigation