Skip to main content
Log in

Effect of glass modifier to former ratio on spectroscopic and transport properties of silver boro-tellurite glass system

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This manuscript focuses on investigating how the ratio of glass modifier to former (m/f) affects the properties of silver borotellurite glass. Upon preparing the glasses with the formula Ag2SO4-TeO2-0.6B2O3, spectroscopic and dielectric analysis was performed on the samples. Crystalline phase is present in samples with an m/f ratio of more than 0.8, while amorphous phase is proven by the absence of prominent peaks in XRD spectra for samples with a m/f ratio of less than 0.8. The densities of the samples became greater with the addition of the various modifiers to the mixture. The mixing caused values for the optical band gap to drop while increasing values for the Urbach energy. The FTIR spectra made the discovery that the structure of the glass had a number of borate and tellurite groups. On the basis of conductivity measurements, an investigation of the change in AC, DC, and activation energy with modifier to former ratio is carried out. The results of the dielectric investigations suggested that an increase in the m/f ratio of Ag + could potentially lead to an improvement in the ionic conductivity of the material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this article are included within the article.

References

  1. H.M.H. Zakaly, S.A.M. Issa, H.O. Tekin, A. Badawi, H.A. Saudi, A.M.A. Henaish, Y.S. Rammah, An experimental evaluation of CdO/PbO-B2O3 glasses containing neodymium oxide: Structure, electrical conductivity, and gamma-ray resistance. Mater. Res. Bull. 151, 111828 (2022). https://doi.org/10.1016/j.materresbull.2022.111828

    Article  CAS  Google Scholar 

  2. P. Giridhar, H.J. Seo, S. Sailaja, M. Bhushan Reddy, C. Nageshwer Raju, B. Sudhaker Reddy, Spectroscopic investigations of Eu3+ and Tb3+: Cadmium lead boro-tellurite glasses. Glass Phys. Chem. 38, 77–84 (2012). https://doi.org/10.1134/S1087659612010075

    Article  CAS  Google Scholar 

  3. A.K. Yadav, P. Singh, Impedance spectroscopic studies of mixed alkali tellurite glasses. J. Mater. Sci. 26, 9443–9450 (2015). https://doi.org/10.1007/s10854-015-3375-7

    Article  CAS  Google Scholar 

  4. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, A.M. Ali, M.A. Sayed, Elastic, Optical and structural features of wide range of CdO- Na2B4O7 glasses. Mater. Res. Express 5(6), 065204 (2018). https://doi.org/10.1088/2053-1591/aac93f

    Article  CAS  Google Scholar 

  5. G. Sangeetha, K. ChandraSekhar, A. Hameed, G. Ramadevudu, M. Narasimha Chary, M. Shareefuddin, Influence of CaO on the structure of zinc sodium tetra borate glassescontaining Cu2+ ions. J. Non-Cryst. Solids 563, 120784 (2021). https://doi.org/10.1016/j.jnoncrysol.2021.120784

    Article  CAS  Google Scholar 

  6. Y.B. Saddeek, M.H. Zakaly, K. Chandra Sekhar, A.M. Issa, T. Alharbi, A. Badawi, M. Shareefuddin, Investigations of mechanical and radiation shielding properties of BaTiO3-modifed cadmium alkali borate glass. Appl. Phys. A 128, 260 (2022). https://doi.org/10.1007/s00339-022-05413-3

    Article  CAS  Google Scholar 

  7. K. Chandra Sekhar, N. Narsimlu, M.S. Al-Buriahi, H.A. Yakout, I.O. Olarinoye, S. Alomairy, M. Shareefuddin, Synthesis, optical, and radiation attenuation properties of CaF2-TeO2-Na2B4O7-CuO glass system for advanced shielding applications. Eur. Phys. J. Plus 136, 903 (2021). https://doi.org/10.1140/epjp/s13360-021-01906-x

    Article  CAS  Google Scholar 

  8. P. Nageswar Rao, E. Ramesh Kumar, C.S.R. Madhireddy, A. Prabhakar Reddy, K. Krishnamurthy Goud, B. Appa Rao, Optical studies of AgI–Ag2SO4–TeO2–B2O3 glass system. Mater. Today 5(2018), 26329–26338 (2018). https://doi.org/10.1016/j.matpr.2018.08.084

    Article  CAS  Google Scholar 

  9. K. Chandra Sekhar, M. Raheem, N. Narsimlu, U. Deshpande, V.G. Sathe, M. Shareefuddin, The effect of the addition of CaF2 and PbF2 on boro-tellurite glasses doped with chromium ions. Mater. Res. Express 6, 125206 (2019). https://doi.org/10.1088/2053-1591/ab619f

    Article  CAS  Google Scholar 

  10. A.A. El-Moneim, R. El-Mallawany, Y.B. Saddeek, Nb2O5–TeO2 and Nb2O5–Li2O–TeO2 glasses: Evaluation of elastic properties. J. Non-Cryst. Solids 575, 121229 (2022). https://doi.org/10.1016/j.jnoncrysol.2021.121229

    Article  CAS  Google Scholar 

  11. F.A. Abdel-Wahab, A.M. Fayad, M. Abdel-Baki, Role of non-bridging oxygen defect in the ionic conductivity and associated oxygen trap centers in lead-borate oxide glass: Effect of structural substitution of PbO for Ag2O and Li2O modifiers. J. Non-Cryst. Solids 500, 84–91 (2018). https://doi.org/10.1016/j.jnoncrysol.2018.06.033

    Article  CAS  Google Scholar 

  12. S. Bhattacharya, A. Ghosh, Relaxation of silver ions in superionic borate glasses. Chem. Phys. Lett. 424(4–6), 295–299 (2006). https://doi.org/10.1016/j.cplett.2006.04.077

    Article  CAS  Google Scholar 

  13. P. Naresha, N. Narsimlu, C. Srinivas, M. Shareefuddin, K. Siva Kumar, Ag2O doped bioactive glasses: An investigation on the antibacterial, optical, structural and impedance studies. J. Non Cryst. Solids 549, 120361 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120361

    Article  CAS  Google Scholar 

  14. T.V.N. Keerti Kut, S. Marijan, J. Pisk, A. Venkata Sekhar, A. Siva, S. Reddy, N. Venkatramaiah, G.N. Raju, Impact of silver ions on dielectric properties and conductivity of lithium silicate glass system mixed with red lead. J. Non Cryst. Solids 588, 121641 (2022). https://doi.org/10.1016/j.jnoncrysol.2022.121641

    Article  CAS  Google Scholar 

  15. S. Rada, M. Rada, R.V. Erhan, V. Bodnarchuk, L. Barbu Tudoran, E. Culea, Hetero geneities in the silver oxide-lead-germanate glasses. J. Alloys Compd. 770, 395–404 (2019). https://doi.org/10.1016/j.jallcom.2018.08.128

    Article  CAS  Google Scholar 

  16. V. Prasad, L. Pavić, A. Moguš-Milanković, A.S.S. Reddy, Y. Gandhi, V.R. Kumar, G.N. Raju, N. Veeraiah, Influence of silver ion concentration on dielectric characteristics of Li2O-Nb2O5-P2O5 glasses. J. Alloys Compd 773, 654–665 (2019). https://doi.org/10.1016/j.jallcom.2018.09.161

    Article  CAS  Google Scholar 

  17. J. Ashok, M. Kostrzewa, A. Ingram, N. Venkatramaiah, M.S. Reddy, V.R. Kumar, M. Piasecki, N. Veeraiah, Structural and dielectric features of silver doped sodium antimonate glass ceramics. J. Alloys Compd 791, 278–295 (2019). https://doi.org/10.1016/j.jallcom.2019.03.228

    Article  CAS  Google Scholar 

  18. M. Nagarjuna, P.R. Rao, Y. Gandhi, V.R. Kumar, N. Veeraiah, Electrical conduction and other related properties of silver ion doped LiF–V2O5–P2O5 glass system. Phys. B 405, 668–677 (2010)

    Article  CAS  Google Scholar 

  19. P. Naresh, N. Narsimlu, C. Srinivas, M.D. Shareefuddin, K. Siva Kumar, Ag2O doped bioactive glasses: An investigation on the antibacterial, optical, structural and impedance studies. J. Non Cryst. Solids 549, 120361 (2020). https://doi.org/10.1016/j.jnoncrysol.2020.120361

    Article  CAS  Google Scholar 

  20. S. Bhattacharya, A. Ghosh, Relaxation of silver ions in superionic borate glasses. Chem. Phys. Letters 424, 295 (2006). https://doi.org/10.1016/j.cplett.2006.04.077

    Article  CAS  Google Scholar 

  21. C. Calahoo, L. Wondraczek, Ionic glasses: Structure, properties and classification. J. Non Cryst. Solids X 8, 100054 (2020). https://doi.org/10.1016/j.nocx.2020.100054

    Article  CAS  Google Scholar 

  22. G.V.J. Gouda, B. Eraiah, R.V. Anavekar, Ionic conductivity of praseodymium doped silver-borate glasses. J. Alloys Compnds. 620, 192–196 (2015). https://doi.org/10.1016/j.jallcom.2014.09.019

    Article  CAS  Google Scholar 

  23. Y.B. Saddeek, M.S. Gaafar, Physical and structural properties of some bismuth borate glasses. Mat. Chem. Phys. 115, 280–286 (2009). https://doi.org/10.1016/j.matchemphys.2008.12.004

    Article  CAS  Google Scholar 

  24. K.C. Sekhar, A. Hameed, N. Narsimlu, J.S. Alzahrani, M.A. Alothman, I.O. Olarinoye, M.S. Al-Buriahi, M.D. Shareefuddin, Synthesis, optical, structural, and radiation transmission properties of PbO/Bi2O3/B2O3/Fe2O3 glasses: An experimental and in silico study. Opt. Mater. 117, 111173 (2021). https://doi.org/10.1016/j.optmat.2021.111173

    Article  CAS  Google Scholar 

  25. S.G. Ramadevudu, M.N. Chary, M. Shareefuddin, Physical and spectroscopic studies of Cr3+ doped mixed alkaline earth oxide borate glasses. Mater. Phys. Chem. 186, 382–389 (2017). https://doi.org/10.1016/j.matchemphys.2016.11.009

    Article  CAS  Google Scholar 

  26. Y. Saddeek, L. Abd El Latif, Effect of TeO2 on the elastic moduli of sodium borate glasses. Phys. B 348, 475 (2004). https://doi.org/10.1016/j.physb.2004.02.001

    Article  CAS  Google Scholar 

  27. K. El-Egili, A. Oraby, The structure and electrical properties of lithium borate glasses containing thallic oxide. J. Phys. Condens. Matter 8, 8959 (1996). https://doi.org/10.1088/0953-8984/8/46/003

    Article  CAS  Google Scholar 

  28. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953). https://doi.org/10.1103/PhysRev.92.1324

    Article  CAS  Google Scholar 

  29. A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 903–922 (1970). https://doi.org/10.1080/14786437008221061

    Article  CAS  Google Scholar 

  30. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569–585 (1972). https://doi.org/10.1016/0022-3093(72)90194-9

    Article  Google Scholar 

  31. K.C. Sekhar, A. Hameed, M.N. Chary, M. Shareefuddin, Physical, optical and electron paramagnetic resonance studies of PbBr 2-PbO-B2O3 glasses containing Cu2+ ions. IOP Conf. Ser. 149, 012167 (2016). https://doi.org/10.1088/1757-899X/149/1/012167

    Article  Google Scholar 

  32. S. Thakur, V. Thakur, A. Kaur, L. Singh, Synthesis and the study of structural, thermal and optical properties of (100–x)Bi2O3-x(BaO-TiO2) glass system. Optik 223, 165646 (2020). https://doi.org/10.1016/j.ijleo.2020.165646

    Article  CAS  Google Scholar 

  33. K. Chandra Sekhar, M. Shareefuddin, A. El-Denglawey, Y.B. Saddeek, Structural and optical properties of BaTiO3 modified cadmium alkali borate glasses. Phys. Scr. 97, 035704 (2022). https://doi.org/10.1088/1402-4896/ac53c7

    Article  Google Scholar 

  34. V. Dimitrov, S. Sakka, Electronic oxide polarizability and optical basicity of simple oxides. I. J. Appl. Phys. 79, 736 (1996). https://doi.org/10.1063/1.360962

    Article  Google Scholar 

  35. V. Dimitrov, T. Komatshu, Classification of simple oxides: A Palarizability approach. J. Solid State Chem. 163, 100 (2002). https://doi.org/10.1006/jssc.2001.9378

    Article  CAS  Google Scholar 

  36. J.A. Duffy, Chemical bonding in the oxides of the elements: A new appraisal. J. Solid State Chem. 62, 145 (1986). https://doi.org/10.1016/0022-4596(86)90225-2

    Article  CAS  Google Scholar 

  37. P. Nageswar Rao, E. Ramesh Kumar, B. Appa Rao, Structural and transport studies of CdI2-dopedsilver borotellurite fastion-conducting system. J. Solid State Electrochem. 22, 3863–3871 (2018). https://doi.org/10.1007/s10008-018-4094-9

    Article  CAS  Google Scholar 

  38. L. Haritha, K. Chandra Sekhar, R. Nagaraju, G. Ramadevudu, V.G. Sathe, M.D. Shareefuddin, Effect of metal fluorides on chromium ions doped bismuth borate glasses for optical applications. Chin. Phys. B (2019). https://doi.org/10.1088/1674-1056/28/3/038101

    Article  Google Scholar 

  39. B. Ashok, K.C. Sekhar, B.S. Chary, G. Ramadevudu, M.N. Chary, M.D. Shareefuddin, Physical and structural study of Al2O3–NaBr–B2O3–CuO glasses. Indian J Phys (2021). https://doi.org/10.1007/s12648-021-02048-7

    Article  Google Scholar 

  40. S.A. Suthanthiraraj, R. Sarumathi, Electrical and structural study of new antimony iodide doped silver sulphate electrolyte. Ionics 19(8), 1145–1153 (2013). https://doi.org/10.1007/s11581-012-0826-5

    Article  CAS  Google Scholar 

  41. M.Z. Iqbal, R. Rafiuddin, Electrical conductivity, dielectric, modulus and optical studies of Ag2SO4 and TiO2 composite solid electrolytes. Mater. Sci. Forum 842, 76–87 (2016). https://doi.org/10.4028/www.scientific.net/MSF.842.76

    Article  Google Scholar 

  42. E. Lefterova, P. Angelov, V. Ilcheva, T. Petkova1, Y. Dimitriev “Investigation of Agi-Ag2so4-Teo2 glasses and glass ceramics” Nanoscience& Nanotechnology, 4eds. E. Balabanova, I. Dragieva, Heron Press, Sofia, 2004

  43. S. Rada, M. Culea, E. Culea, Structure of TeO2 B2O3 glasses inferred from infrared spectroscopy and DFT calculations. J. Non-Cryst Solids 354, 5491–5495 (2008). https://doi.org/10.1016/j.jnoncrysol.2008.09.009

    Article  CAS  Google Scholar 

  44. V. Kozhukharov, S. Nikolav, M. Marinov, T. Troev, Studies of glass structure in the TeO2- Fe2O3 system. Mater. Res. Bull. 14, 735 (1979). https://doi.org/10.1016/0025-5408(79)90132-6

    Article  CAS  Google Scholar 

  45. S. Dariush, K. Shomalian, Band gap determination by Absorption Spectrum Fitting method (ASF) and structural properties of different compositions of (60–x) V2O5–40TeO2–xSb2O3 glasses. J. Non-Cryst. Solids. 355, 1597–1601 (2009). https://doi.org/10.1016/j.jnoncrysol.2009.06.003

    Article  CAS  Google Scholar 

  46. S. Rada, E. Culea, M. Rada, P. Pescuta, V. Maties, Structural and electronic properties of tellurite glasses. J Mater Sci 44, 3235–3240 (2009). https://doi.org/10.1007/s10853-009-3433-8

    Article  CAS  Google Scholar 

  47. G.D. Chryssikos, E.I. Kamitsos, A.P. Patsis, Synthesis and characterization of new solid electrolyte conductors of lithium ions. Solid State Ionics 1, 177–186 (1980). https://doi.org/10.1016/0167-2738(80)90002-8

    Article  Google Scholar 

  48. G.D. Chrissicos, E.I. Kamitsos, A.P. Patsis, Effect of Li2SO4 on the structure of Li2O-B2O3 glasses. J. Non-Cryst. Solids 202, 222 (1996). https://doi.org/10.1016/0022-3093(96)00200-1

    Article  Google Scholar 

  49. A. Prabhakar Reddy, P.N. Rao, M.C.S. Reddy, B. Appa Rao, N. Veeraiah, Second harmonic generation and spectroscopic characteristics of TiO2doped Li2O–Al2O3–B2O3 glass matrix. Appl. Phys. A 126, 689 (2020). https://doi.org/10.1007/s00339-020-03879-7

    Article  CAS  Google Scholar 

  50. A. Bhargava, R.L. Snyder, R.A. Condrate, The Raman and infrared spectra of the glasses in the system BaO-TiO2-B2O3. Mater. Res. Bull. 22, 1603 (1987). https://doi.org/10.1016/0025-5408(87)90002-X

    Article  CAS  Google Scholar 

  51. A.K. Jonscher, The ‘universal’ dielectric response. Nature 267, 673 (1977). https://doi.org/10.1038/267673a0

    Article  CAS  Google Scholar 

  52. A.K. Jonscher, The universal dielectric response: a review of data their new interpretation (Chelsea Dielectrics Group, London, 1978)

    Google Scholar 

  53. N.K. Karan, B. Natesan, R.S. Katiyar, Structural and lithium ion transport studies in borophosphate glasses. Solid State Ionics 177, 1429–1436 (2006). https://doi.org/10.1016/j.ssi.2006.07.032

    Article  CAS  Google Scholar 

  54. A. Ghosh, A. Pan, Scaling of the Conductivity Spectra in Ionic Glasses: Dependence on the Structure. Phys. Rev. Let. 84(10), 2188–2190 (2000). https://doi.org/10.1103/PhysRevLett.84.2188

    Article  CAS  Google Scholar 

  55. P. Nageswar Rao, E. Ramesh Kumar, B. Appa Rao, Effect of quenching rate on electrical conductivity and glass formation of AgI–Ag2SO4–TeO2–B2O3 system. J. Mater. Sci. 29, 11247–11257 (2018). https://doi.org/10.1007/s10854-018-9211-0

    Article  CAS  Google Scholar 

  56. P.N. Rao, E. Ramesh Kumar, B. Appa Rao, Structural, electrical, and transport number studies of AgI-doped silver borotellurite fast ion conducting glass system. Ionics 24(12), 3885–3895 (2018). https://doi.org/10.1007/s11581-018-2550-2

    Article  CAS  Google Scholar 

  57. A.K. Joncher, Dielectric relaxation in solids (Chesla dielectric press, London, 1983)

    Google Scholar 

  58. M. Mohamad, A.K. Yamada, T. Okuda, Ionic conduction and relaxation in KSn2F5 fluoride ion conductor. Physica B 339(2–3), 94–100 (2003). https://doi.org/10.1016/j.physb2003.08.056

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

PNR: Material preparation, data collection, conceptualization, investigation, validation. KCS: Material preparation, data collection, conceptualization, investigation, validation. TR: Investigation, methodology, writing—original draft, MCSR: Investigation, methodology, writing—original draft. KVR: Investigation, methodology, writing—original draft. MS: Investigation, writing—review and editing, supervision. BAR: Investigation, writing—review and editing, supervision.

Corresponding author

Correspondence to K. Chandra Sekhar.

Ethics declarations

Conflict of interest

The authors whose names are listed immediately below the title of the manuscript certify that they have NO affiliations with or involvement in any organization or entity with any financial interest(such as honoraria; educational grants; participation in speakers' bureaus; membership, employment, consultancies, stock ownership, or other equity interest; and expert testimony or patent-licensing arrangements), or non-financial interest (such as personal or professional relationships, affiliations, knowledge or beliefs) in the subject matter or materials discussed in this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, P.N., Sekhar, K.C., Ramesh, T. et al. Effect of glass modifier to former ratio on spectroscopic and transport properties of silver boro-tellurite glass system. J Mater Sci: Mater Electron 34, 1756 (2023). https://doi.org/10.1007/s10854-023-11165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11165-4

Navigation