Skip to main content
Log in

Biodegradable and recyclable composite membrane of relaxor ferroelectrics and bacterial cellulose with excellent output performance for triboelectric nanogenerator application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Composite membrane of relaxor ferroelectrics (RFE) Sr0.7Bi0.2TiO3 and bacterial cellulose is proposed to enhance the output performance of triboelectric nanogenerator (TENG) in this work. As the added RFE contents increase, the output performance first becomes better and then deteriorates. The optimal open-circuit voltage and short-circuit current are, respectively, 640 V and 23.0 µA, to generate areal output power of 148 µW/cm2, which is achieved in the 1-wt% RFE composite-based TENG. The effects of the RFE adding contents on the output performance can be explained by the balance between the polarization contribution of the RFE and the effect of surface roughness. Such excellent output performance is comparable to or better than those TENGs using the similar friction layers with additional metal nanowires, which is attributed to highly efficient releasing energy capability of RFE. Moreover, both the good recyclability and biodegradability of the composite membrane are demonstrated. This work suggests that the environmental-friendly composite membrane provides an opportunity to replace traditional friction materials and enhance the output performance of TENG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. P. Basset, S.P. Beeby, C. Bowen, Z.J. Chew, A. Delbani, R.D.I.G. Dharmasena, B. Dudem, F.R. Fan, D. Galayko, H.Y. Guo, J.H. Hao, Y.C. Hou, C.G. Hu, Q.S. Jing, Y.H. Jung, S.K. Karan, S. Kar-Narayan, M. Kim, S.-W. Kim, Y. Kuang, K.J. Lee, J.L. Li, Z.L. Li, Y. Long, S. Priya, X.J. Pu, T.W. Ruan, S.R.P. Silva, H.S. Wang, K. Wang, X.D. Wang, Z.L. Wang, W.Z. Wu, W. Xu, H.M. Zhang, Y. Zhang, M.L. Zhu, Roadmap on nanogenerators and piezotronics. APL Mater. 10, 109201 (2022)

    Article  CAS  Google Scholar 

  2. M. Jiang, Y. Lu, Z.Y. Zhu, W.Z. Jia, Advances in smart sensing and medical electronics by self-powered sensors based on triboelectric nanogenerators. Micromachines 12, 698 (2021)

    Article  Google Scholar 

  3. Z. Lou, L.L. Wang, K. Jiang, Z.M. Wei, G.Z. Shen, Reviews of wearable healthcare systems: materials, devices and system integration. Mat. Sci. Eng. R. 140, 100523 (2020)

    Article  Google Scholar 

  4. H.-J. Kim, E.-C. Yim, J.-H. Kim, S.-J. Kim, J.-Y. Park, I.-K. Oh, Bacterial nano-cellulose triboelectric nanogenerator. Nano Energy 33, 130 (2017)

    Article  CAS  Google Scholar 

  5. C.H. Yao, X. Yin, Y.H. Yu, Z.Y. Cai, X.D. Wang, Chemically functionalized natural cellulose materials for effective triboelectric nanogenerator development. Adv. Funct. Mater. 27, 1700794 (2017)

    Article  Google Scholar 

  6. C.H. Yao, A. Hernandez, Y.H. Yu, Z.Y. Cai, X.D. Wang, Triboelectric nanogenerators and power-boards from cellulose nanofibrils and recycled materials. Nano Energy. 30, 103 (2016)

    Article  CAS  Google Scholar 

  7. X. He, H.Y. Zou, Z.S. Geng, X.F. Wang, W.B. Ding, F. Hu, Y.L. Zi, C. Xu, S.L. Zhang, H. Yu, M.Y. Xu, W. Zhang, C.H. Lu, Z.L. Wang, A hierarchically nanostructured cellulose fiber-based triboelectric nanogenerator for self-powered healthcare products. Adv. Funct. Mater. 28, 1805540 (2018)

    Article  Google Scholar 

  8. W.X. Song, B.H. Gan, T. Jiang, Y. Zhang, A.F. Yu, H.T. Yuan, N. Chen, C.W. Sun, Z.L. Wang, Nanopillar arrayed triboelectric nanogenerator as a self-powered sensitive sensor for a sleep monitoring system. ACS Nano 10, 8097 (2016)

    Article  CAS  Google Scholar 

  9. W. Seung, M.K. Gupta, K.Y. Lee, K.-S. Shin, J.-H. Lee, T.Y. Kim, S. Kim, J.J. Lin, J.H. Kim, S.-W. Kim, Nanopatterned textile-based wearable triboelectric nanogenerator. ACS Nano 9, 3501 (2015)

    Article  CAS  Google Scholar 

  10. H.Y. Li, L. Su, S.Y. Kuang, C.F. Pan, G. Zhu, Z.L. Wang, Significant enhancement of triboelectric charge density by fluorinated surface modification in nanoscale for converting mechanical energy. Adv. Funct. Mater. 25, 5691 (2015)

    Article  CAS  Google Scholar 

  11. X.S. Zhang, M.D. Han, R.X. Wang, B. Meng, F.Y. Zhu, X.M. Sun, W. Hu, W. Wang, Z.H. Li, H.X. Zhang, High-performance triboelectric nanogenerator with enhanced energy density based on single-step fluorocarbon plasma treatment. Nano Energy. 4, 123 (2014)

    Article  CAS  Google Scholar 

  12. H. Wang, M.Y. Shi, K. Zhu, Z.M. Su, X.L. Cheng, Y. Song, X.X. Chen, Z.Q. Liao, M. Zhang, H.X. Zhang, High performance triboelectric nanogenerators with aligned carbon nanotubes. Nanoscale. 8, 18489 (2016)

    Article  CAS  Google Scholar 

  13. G.Q. Suo, Y.H. Yu, Z.Y. Zhang, S.F. Wang, P. Zhao, J.Y. Li, Piezoelectric and triboelectric dual effects in mechanical-energy harvesting using BaTiO3/polydimethylsiloxane composite film. Appl. Mater. Inter. 8, 34335 (2016)

    Article  CAS  Google Scholar 

  14. W. Seung, H.J. Yoon, T.Y. Kim, H. Ryu, J. Kim, J.H. Lee, J.H. Lee, S. Kim, Y.K. Park, Y.J. Park, Boosting power-generating performance of triboelectric nanogenerators via artificial control of ferroelectric polarization and dielectric properties. Adv. Energy Mater. 7, 1600988 (2017)

    Article  Google Scholar 

  15. J. Chen, H.Y. Guo, X.M. He, G.L. Liu, Y. Xi, H.F. Shi, C.G. Hu, Enhancing performance of triboelectric nanogenerator by filling high dielectric nanoparticles into sponge PDMS film. ACS Appl. Mater. Interface 8, 736 (2016)

    Article  CAS  Google Scholar 

  16. Z.G. Fang, K.H. Chan, X. Lu, C.F. Tan, G.W. Ho, Surface texturing and dielectric property tuning toward boosting of triboelectric nanogenerator performance. J. Mater. Chem. A 6, 52, 10 (2018)

    Article  Google Scholar 

  17. H. Oh, S.S. Kwak, B. Kim, E. Han, G.H. Lim, S.W. Kim, Highly conductive ferroelectric cellulose Composite Papers for efficient triboelectric nanogenerators. Adv. Funct. Mater. 29, 1904066 (2019)

    Article  Google Scholar 

  18. Q.Y. Zhu, L. Dong, J.W. Zhang, K.X. Xu, Y.J. Zhang, H.J. Shi, H.W. Lu, Y.H. Wu, H.W. Zheng, Z.F. Wang, All-in-one hybrid tribo/piezoelectric nanogenerator with the point contact and its adjustable charge transfer by ferroelectric polarization ceram. Int 46, 28277 (2020)

    CAS  Google Scholar 

  19. A.K. Gupta, C.H. Hsu, S.N. Lai, C.S. Lai, ZnO-polystyrene composite as efficient energy harvest for self-powered triboelectric nanogenerator. ECS J. Solid State SC 9, 115019 (2020)

    CAS  Google Scholar 

  20. Z.Z. Sun, L. Yang, S.C. Liu, J.T. Zhao, Z.W. Hu, W.L. Song, A green triboelectric nano-generator composite of degradable cellulose, piezoelectric polymers of PVDF/PA6, and nanoparticles of BaTiO3. Sensors 20(2), 506 (2020)

    Article  CAS  Google Scholar 

  21. S. Jang, J.H. Oh, Fabrication of microporous BaTiO3/PDMS nanocomposites for triboelectric nanogenerators through one-step microwave irradiation. Sci. Rep. Rapid 8, 14287 (2018)

    Article  Google Scholar 

  22. H. Yu, Y. Shao, C. Luo, Y. Li, H.Z. Ma, Y.H. Zhang, B. Yin, J.B. Shen, M.B. Yang, Bacterial cellulose nanofiber triboelectric nanogenerator based on dielectric particles hybridized system. Compos. Part. A 151, 106646 (2021)

    Article  CAS  Google Scholar 

  23. Q. Jiang, B. Chen, Y. Yang, Wind-driven triboelectric nanogenerators for scavenging biomechanical energy. ACS Appl. Energy Mater. 1(8), 4269–4276 (2018)

    Article  CAS  Google Scholar 

  24. K. Hyungseok, K. Han, K. Seongsu, S. Hyeon Jin, C. Siuk, H. Ji-Hyeok, D.Y. Lee, L. Seungwoo, K. Sang‐Woo, Mechanically robust silver nanowires network for triboelectric nanogenerators. Adv. Funct. Mater. 26, 7717–7724 (2016)

    Article  Google Scholar 

  25. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, High-performance dielectric ceramic films for energy storage capacitors: progress and outlook. Adv. Funct. Mater. 28(42), 1803665 (2018)

    Article  Google Scholar 

  26. Z.T. Yang, H.L. Du, L. Jin, D. Poelman, High-performance lead-free bulk ceramics for electrical energy storage applications: design strategies and challenges. J. Mater. Chem. A 9(34), 18026–18085 (2021)

    Article  CAS  Google Scholar 

  27. J.H. Zhang, Y. Zhang, N.N. Sun, Y.L.J.H. Du, L.P. Zhu, X.H. Hao, Enhancing output performance of triboelectric nanogenerator via large polarization difference effect. Nano Energy. 84, 105892 (2021)

    Article  CAS  Google Scholar 

  28. S.L. Yang, C.Y. Zuo, F. Du, L. Chen, W.J. Jie, X.H. Wei, Submicron Sr0.7Bi0.2TiO3 dielectric ceramics for energy storage via a two-step method aided by cold sintering process. Mater. Des. 225, 111447 (2023)

    Article  CAS  Google Scholar 

  29. C.Y. Zuo, S.L. Yang, Z.Q. Cao, H.T. Yu, X.H. Wei, Excellent energy storage and hardness performance of Sr0.7Bi0.2TiO3 ceramics fabricated by solution combustion-synthesized nanopowders. Chem. Eng. J. 442, 136330 (2022)

    Article  CAS  Google Scholar 

  30. M.S. Chargot, J. Cybulska, A. Zdunek, Sensing the structural differences in cellulose from apple and bacterial cell wall materials by raman and FT-IR spectroscopy. Sensors 11, 5543 (2021)

    Article  Google Scholar 

  31. F.Y. Xiao, J.M. Xu, L.L. Cao, S.Q. Jiang, Q.Y. Zhang, L.P. Wang, Environ. In situ hydrothermal fabrication of visible light-driven g-C3N4/SrTiO3 composite for photocatalytic degradation of TC. Sci. Pollut. Res. 27, 5788 (2020)

    Article  CAS  Google Scholar 

  32. C.S. Wu, A.C. Wang, W.B. Ding, H.Y. Guo, Z.L. Wang, Triboelectric nanogenerator: a foundation of the energy for the new era. Adv. Energy Mater. 9, 1802906 (2019)

    Article  Google Scholar 

  33. L.L. Zhou, D. Liu, J. Wang, Z.L. Wang, Triboelectric nanogenerators: fundamental physics and potential applications. Friction. 8, 481 (2020)

    Article  CAS  Google Scholar 

  34. S. Niu, Z.L. Wang, Theoretical systems of triboelectric nanogenerators. Nano Energy. 14, 161 (2015)

    Article  CAS  Google Scholar 

  35. X.S. Zhang, M.D. Han, R.X. Wang, F.Y. Zhu, Z.H. Li, W. Wang, H.X. Zhang, Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems. Nano Lett. 13, 1168 (2013)

    Article  CAS  Google Scholar 

  36. S. Jakmuangpak, T. Prada, W. Mongkolthanaruk, V. Harnchana, S. Pinitsoontorn, Engineering bacterial cellulose films by nanocomposite approach and surface modification for biocompatible triboelectric nanogenerator. ACS Appl. Electron. Mater. 2, 2498 (2020)

    Article  CAS  Google Scholar 

  37. Y. Shao, C.P. Feng, B.W. Deng, B. Yin, M.B. Yang, Facile method to enhance output performance of bacterial cellulose nanofiber based triboelectric nanogenerator by controlling micro-nano structure and dielectric constant. Nano Energy. 62, 620 (2019)

    Article  CAS  Google Scholar 

  38. S. Niu, S.H. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y.F. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source. Energy Environ. Sci. 6, 3576 (2013)

    Article  Google Scholar 

  39. S. Niu, Y. Liu, S.H. Wang, L. Lin, Y.S. Zhou, Y.F. Hu, Z.L. Wang, Theoretical investigation and structural optimization of single-electrode Triboelectric Nanogenerators. Adv. Funct. Mater. 24, 3332 (2014)

    Article  CAS  Google Scholar 

  40. J.T. Zhang, S.M. Hu, Z.J. Shi, Y.F. Wang, Y.Q. Lei, J. Han, Y. Xiong, J. Sun, L. Zheng, Q.J. Sun, Z.L. Wang, Eco-friendly and recyclable all cellulosetriboelectric nanogenerator and self-powered interactive interface. Nano Energy. 89, 106354 (2021)

    Article  CAS  Google Scholar 

  41. T.M. Woods, S.I. Mccrae, Synergism between enzymes involved in the solubilization of native cellulose. Adv. Chem. Ser. 181, 181–209 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of State Key Laboratory of Environment-friendly Energy Materials, Southwest University of Science and Technology (21FKSY17, 22FKSY16).

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

HM contributed to conceptualization, investigation, and writing of the original draft. SL contributed to investigation and validation. ZZ provided resources. XW contributed to conceptualization, writing, reviewing, and editing of the manuscript, supervision, and project administration.

Corresponding author

Correspondence to Xianhua Wei.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16988.6 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, H., Li, S., Zheng, Z. et al. Biodegradable and recyclable composite membrane of relaxor ferroelectrics and bacterial cellulose with excellent output performance for triboelectric nanogenerator application. J Mater Sci: Mater Electron 34, 1757 (2023). https://doi.org/10.1007/s10854-023-11158-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11158-3

Navigation