Skip to main content
Log in

Highly flexible and harsh temperature-tolerant single-electrode mode triboelectric nanogenerators via biocompatible ionic liquid electrolytes for wearable electronic applications

  • Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

Conductive ionic liquid electrolytes have attracted increasing attention because of their remarkable energy harvesting and storage characteristics for utilization in triboelectric nanogenerators and energy storage devices, respectively. Especially, the ionic conductive liquid electrolyte-based energy harvesting device that can operate with high efficiency and stability in harsh temperature conditions is greatly needed for urgent rescue and wilderness exploration. Herein, the dual-function nature of carboxymethyl cellulose (CMC), water, and glycerol was employed as an electrolyte as well as an electrical conductor for single-electrode triboelectric nanogenerator (TENG) and supercapacitor applications. The biocompatible ionic liquid electrode-based single-electrode TENG (LSE-TENG) exhibits superior performance with an optimized CMC concentration of 3 wt%. Furthermore, by incorporating an additional ionic compound (NaCl) in the optimized CMC-based ionic liquid solutions, the performance of the LSE-TENG and the electrochemical properties are largely enhanced. With the anti-freezing and anti-dehydration properties of glycerol, the fabricated LSE-TENG delivers stable electrical output performance in the low temperature (−20 °C) to high temperature (70 °C) range. The power density of the 3 wt% NaCl-based LSE-TENG increases by 11 folds as compared to the CMC-based LSE-TENG. In addition, the LSE-TENG is integrated with a sensor for anti-theft applications. The present study demonstrates an innovative engineering technology for fabricating high-performance TENGs that can prove enormous interest in flexible and wearable applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data that supports the findings of this study are available from the corresponding author on reasonable request.

References

  1. Wu Y, Luo Y, Qu J, Daoud WA, Qi T (2020) Sustainable and shape-adaptable liquid single-electrode triboelectric nanogenerator for biomechanical energy harvesting. Nano Energy 75:105027. https://doi.org/10.1016/j.nanoen.2020.105027

    Article  CAS  Google Scholar 

  2. Guo H, Li T, Cao X, Xiong J, Jie Y, Willander M, Cao X, Wang N, Wang ZL (2017) Self-sterilized flexible single-electrode triboelectric nanogenerator for energy harvesting and dynamic force sensing. ACS Nano 11:856–864. https://doi.org/10.1021/acsnano.6b07389

    Article  CAS  PubMed  Google Scholar 

  3. Wu Y, Qu J, Zhang X, Ao K, Zhou Z, Zheng Z, Mu Y, Wu X, Luo Y, Feng S-P (2021) Biomechanical energy harvesters based on ionic conductive organohydrogels via the hofmeister effect and electrostatic interaction. ACS Nano 15:13427–13435. https://doi.org/10.1021/acsnano.1c03830

    Article  CAS  PubMed  Google Scholar 

  4. Li G, Wang L, Lei X, Peng Z, Wan T, Maganti S, Huang M, Murugadoss V, Seok I, Jiang Q, Cui D, Alhadhrami A, Ibrahim MM, Wei H (2022) Flexible, yet robust polyaniline coated foamed polylactic acid composite electrodes for high-performance supercapacitors. Adv Compos and Hybrid Mater 5:853–863. https://doi.org/10.1007/s42114-022-00501-7

    Article  CAS  Google Scholar 

  5. Yuan G, Wan T, BaQais A, Mu Y, Cui D, Amin MA, Li X, Xu BB, Zhu X, Algadi H, Li H, Wasnik P, Lu N, Guo Z, Wei H, Cheng B (2023) Boron and fluorine Co-doped laser-induced graphene towards high-performance micro-supercapacitors. Carbon 212:118101. https://doi.org/10.1016/j.carbon.2023.118101

    Article  CAS  Google Scholar 

  6. Li D, Liu H, Liu H, Chen Y, Wang C, Guo L (2023) A NiCoSex/CG heterostructure with strong interfacial interaction showing rapid diffusion kinetics as a flexible anode for high-rate sodium storage. Dalton Trans 52:5192–5201. https://doi.org/10.1039/D3DT00273J

    Article  CAS  PubMed  Google Scholar 

  7. Alluri NR, Maria Joseph Raj NP, Khandelwal G, Kim S-J (2021) High-Performance multifaceted piezoelectric composite nanogenerators for weight-monitoring sensors. ACS Appl Electron Mater 3:2024–2034. https://doi.org/10.1021/acsaelm.0c01142

    Article  CAS  Google Scholar 

  8. Patnam H, Dudem B, Alluri NR, Mule AR, Graham SA, Kim S-J, Yu JS (2020) Piezo/triboelectric hybrid nanogenerators based on Ca-doped barium zirconate titanate embedded composite polymers for wearable electronics. Compos Sci Technol 188:107963. https://doi.org/10.1016/j.compscitech.2019.107963

    Article  CAS  Google Scholar 

  9. Patnam H, Graham SA, Yu JS (2021) Y-ZnO Microflowers embedded polymeric composite films to enhance the electrical performance of piezo/tribo hybrid nanogenerators for biomechanical energy harvesting and sensing applications. ACS Sustain Chem Eng 9:4600–4610. https://doi.org/10.1021/acssuschemeng.1c00025

    Article  CAS  Google Scholar 

  10. Cao G, Cai S, Zhang H, Tian Y (2022) High-performance conductive adhesives based on water-soluble resins for printed circuits, flexible conductive films, and electromagnetic interference shielding devices. Adv Compos and Hybrid Mater 5:1730–1742. https://doi.org/10.1007/s42114-021-00402-1

    Article  CAS  Google Scholar 

  11. Wang Y, Yang D, Hessien MM, Du K, Ibrahim MM, Su Y, Mersal GAM, Ma R, El-Bahy SM, Huang M, Yuan Q, Cui B, Hu D (2022) Flexible barium titanate@polydopamine/polyvinylidene fluoride/polymethyl methacrylate nanocomposite films with high performance energy storage. Adv Compos and Hybrid Mater 5:2106–2115. https://doi.org/10.1007/s42114-022-00552-w

    Article  CAS  Google Scholar 

  12. Cui X, Zhang C, Liu W, Zhang Y, Zhang J, Li X, Geng L, Wang X (2018) Pulse sensor based on single-electrode triboelectric nanogenerator. Sens Actuators A 280:326–331. https://doi.org/10.1016/j.sna.2018.07.051

    Article  CAS  Google Scholar 

  13. Jao Y-T, Yang P-K, Chiu C-M, Lin Y-J, Chen S-W, Choi D, Lin Z-H (2018) A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors. Nano Energy 50:513–520. https://doi.org/10.1016/j.nanoen.2018.05.071

    Article  CAS  Google Scholar 

  14. Chao S, Ouyang H, Jiang D, Fan Y, Li Z (2021) Triboelectric nanogenerator based on degradable materials. EcoMat 3:12072. https://doi.org/10.1002/eom2.12072

    Article  CAS  Google Scholar 

  15. Xia R, Zhang R, Jie Y, Zhao W, Cao X, Wang Z (2022) Natural cotton-based triboelectric nanogenerator as a self-powered system for efficient use of water and wind energy. Nano Energy 92:106685. https://doi.org/10.1016/j.nanoen.2021.106685

    Article  CAS  Google Scholar 

  16. Cui C, Wang X, Yi Z, Yang B, Wang X, Chen X, Liu J, Yang C (2018) Flexible single-electrode triboelectric nanogenerator and body moving sensor based on porous Na2CO3/polydimethylsiloxane film. ACS Appl Mater Interfaces 10:3652–3659. https://doi.org/10.1021/acsami.7b17585

    Article  CAS  PubMed  Google Scholar 

  17. Wang W, Zhou J, Wang S, Yuan F, Liu S, Zhang J, Gong X (2022) Enhanced Kevlar-based triboelectric nanogenerator with anti-impact and sensing performance towards wireless alarm system. Nano Energy 91:106657. https://doi.org/10.1016/j.nanoen.2021.106657

    Article  CAS  Google Scholar 

  18. Patnam H, Dudem B, Graham SA, Yu JS (2021) High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications. Energy 223:120031. https://doi.org/10.1016/j.energy.2021.120031

    Article  CAS  Google Scholar 

  19. Yang Y, Sun N, Wen Z, Cheng P, Zheng H, Shao H, Xia Y, Chen C, Lan H, Xie X, Zhou C, Zhong J, Sun X, Lee S-T (2018) Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano 12:2027–2034. https://doi.org/10.1021/acsnano.8b00147

    Article  CAS  PubMed  Google Scholar 

  20. Zhu Z, Xiang H, Zeng Y, Zhu J, Cao X, Wang N, Wang ZL (2022) Continuously harvesting energy from water and wind by pulsed triboelectric nanogenerator for self-powered seawater electrolysis. Nano Energy 93:106776. https://doi.org/10.1016/j.nanoen.2021.106776

    Article  CAS  Google Scholar 

  21. Mule AR, Dudem B, Patnam H, Graham SA, Yu JS (2019) Wearable single-electrode-mode triboelectric nanogenerator via conductive polymer-coated textiles for self-power electronics. ACS Sustain Chem Eng 7:16450–16458. https://doi.org/10.1021/acssuschemeng.9b03629

    Article  CAS  Google Scholar 

  22. Dudem B, Mule AR, Patnam HR, Yu JS (2019) Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy 55:305–315. https://doi.org/10.1016/j.nanoen.2018.10.074

    Article  CAS  Google Scholar 

  23. Yan L, Mi Y, Lu Y, Qin Q, Wang X, Meng J, Liu F, Wang N, Cao X (2022) Weaved piezoresistive triboelectric nanogenerator for human motion monitoring and gesture recognition. Nano Energy 96:107135. https://doi.org/10.1016/j.nanoen.2022.107135

    Article  CAS  Google Scholar 

  24. Wu M, Wang X, Xia Y, Zhu Y, Zhu S, Jia C, Guo W, Li Q, Yan Z (2022) Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 95:106967. https://doi.org/10.1016/j.nanoen.2022.106967

    Article  CAS  Google Scholar 

  25. Wu Y, Luo Y, Qu J, Daoud WA, Qi T (2019) Liquid single-electrode triboelectric nanogenerator based on graphene oxide dispersion for wearable electronics. Nano Energy 64:103948. https://doi.org/10.1016/j.nanoen.2019.103948

    Article  CAS  Google Scholar 

  26. Qiu Y, Fang H, Guo J, Wu H (2022) Fully nano/micro-fibrous triboelectric on-skin patch with high breathability and hydrophobicity for physiological status monitoring. Nano Energy 98:107311. https://doi.org/10.1016/j.nanoen.2022.107311

    Article  CAS  Google Scholar 

  27. Lin Z, Li X, Zhang H, Xu BB, Wasnik P, Li H, Singh MV, Ma Y, Li T, Guo Z (2023) Research progress of MXenes and layered double hydroxides for supercapacitors. Inorg Chem Front 10:4358–4392. https://doi.org/10.1039/D3QI00819C

    Article  CAS  Google Scholar 

  28. Xu W, Huang L-B, Wong M-C, Chen L, Bai G, Hao J (2017) Environmentally friendly hydrogel-based triboelectric nanogenerators for versatile energy harvesting and self-powered sensors. Adv Energy Mater 7:1601529. https://doi.org/10.1002/aenm.201601529

    Article  CAS  Google Scholar 

  29. Huang L-B, Dai X, Sun Z, Wong M-C, Pang S-Y, Han J, Zheng Q, Zhao C-H, Kong J, Hao J (2021) Environment-resisted flexible high performance triboelectric nanogenerators based on ultrafast self-healing non-drying conductive organohydrogel. Nano Energy 82:105724. https://doi.org/10.1016/j.nanoen.2020.105724

    Article  CAS  Google Scholar 

  30. Shi X, Chen S, Zhang H, Jiang J, Ma Z, Gong S (2019) Portable self-charging power system via integration of a flexible paper-based triboelectric nanogenerator and supercapacitor. ACS Sustain Chem Eng 7:18657–18666. https://doi.org/10.1021/acssuschemeng.9b05129

    Article  CAS  Google Scholar 

  31. Zhang J, Zhao X, Wang Z, Liu Z, Yao S, Li L (2022) Antibacterial, antifreezing, stretchable, and self-healing organohydrogel electrode based triboelectric nanogenerator for self-powered biomechanical sensing. Adv Mater Interfaces 9:2200290. https://doi.org/10.1002/admi.202200290

    Article  CAS  Google Scholar 

  32. Zhao X, Wang Z, Liu Z, Yao S, Zhang J, Zhang Z, Huang T, Zheng L, Wang ZL, Li L (2022) Anti-freezing and stretchable triboelectric nanogenerator based on liquid electrode for biomechanical sensing in extreme environment. Nano Energy 96:107067. https://doi.org/10.1016/j.nanoen.2022.107067

    Article  CAS  Google Scholar 

  33. Lee B-M, Jeong C-U, Hong S-K, Yun J-M, Choi J-H (2020) Eco-friendly fabrication of porous carbon monoliths from water-soluble carboxymethyl cellulose for supercapacitor applications. J Ind Chem Eng 82:367–373. https://doi.org/10.1016/j.jiec.2019.10.036

    Article  CAS  Google Scholar 

  34. Babu IM, William JJ, Muralidharan G (2019) Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl Surf Sci 480:371–383. https://doi.org/10.1016/j.apsusc.2019.02.215

    Article  CAS  Google Scholar 

  35. Cyriac V, Ismayil IM, Noor K, Mishra C, Chavan RF, Bhajantri SPM (2022) Ionic conductivity enhancement of PVA: carboxymethyl cellulose poly-blend electrolyte films through the doping of NaI salt. Cellulose 29:3271–3291. https://doi.org/10.1007/s10570-022-04483-z

    Article  CAS  Google Scholar 

  36. Shetty SK, Ismayil IMN (2021) Effect of new crystalline phase on the ionic conduction properties of sodium perchlorate salt doped carboxymethyl cellulose biopolymer electrolyte films. J Polym Res 28:415. https://doi.org/10.1007/s10965-021-02781-x

    Article  CAS  Google Scholar 

  37. Hor AA, Hashmi SA (2020) Optimization of hierarchical porous carbon derived from a biomass pollen-cone as high-performance electrodes for supercapacitors. Electrochim Acta 356:136826. https://doi.org/10.1016/j.electacta.2020.136826

    Article  CAS  Google Scholar 

  38. Pérez-Madrigal MM, Edo MG, Saborío MG, Estrany F, Alemán C (2018) Pastes and hydrogels from carboxymethyl cellulose sodium salt as supporting electrolyte of solid electrochemical supercapacitors. Carbohydr Polym 200:456–467. https://doi.org/10.1016/j.carbpol.2018.08.009

    Article  CAS  PubMed  Google Scholar 

  39. Shetty SK, Ismayil N, Swathi MG, Mahesha RK (2021) Sodium ion conducting PVA/NaCMC bio poly-blend electrolyte films for energy storage device applications. Int J Polym Anal Charact 26:411–424. https://doi.org/10.1080/1023666X.2021.1899685

    Article  CAS  Google Scholar 

  40. Dueramae I, Okhawilai M, Kasemsiri P, Uyama H, Kita R (2020) Properties enhancement of carboxymethyl cellulose with thermo-responsive polymer as solid polymer electrolyte for zinc ion battery. Sci Rep 10:12587. https://doi.org/10.1038/s41598-020-69521-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bansod PG, Dharaskar S, Kodape S (2022) Application of response surface methodology for optimization and separation of free glycerol, diglyceroids and triglycerides from biodiesel using PES ultrafiltration membrane. Anal Chem Lett 12:380–390. https://doi.org/10.1080/22297928.2022.2055490

    Article  CAS  Google Scholar 

  42. Yao C, Zhao W, Liu L, Liu Q, Li J (2023) Flexible, programable sensing system with poly(AAm-HEMA-SA) for human motion detection. ES Mater Manuf 20:818. https://doi.org/10.30919/esmm5f818

    Article  CAS  Google Scholar 

  43. Sengwa RJ, Saraswat M, Dhatarwal P (2022) Comprehensive characterization of glycerol/ZnO green nanofluids for advances in multifunctional soft material technologies. J Mol Liq 355:118925. https://doi.org/10.1016/j.molliq.2022.118925

    Article  CAS  Google Scholar 

  44. Qian X, Lu A (2021) Transparent, robust, nondrying, and antifreezing cellulose organohydrogels for energy harvesting and sensing applications. ACS Appl Polym Mater 3:3747–3754. https://doi.org/10.1021/acsapm.1c00239

    Article  CAS  Google Scholar 

  45. Hussain SK, Krishna BNV, Yu JS (2022) Transition metal dichalcogenide nanostructured electrodes without calcination for aqueous asymmetric supercapacitors. Int J Energy Res 46:9414–430. https://doi.org/10.1002/er.7814

    Article  CAS  Google Scholar 

  46. Liang Y, Wei Z, Zhang X, Wang R (2022) Fabrication of vanadium oxide@polypyyrole (V2O5@PPy) core-shell nanofiber electrode for supercapacitor. ES Energy Environ 18:101–110. https://doi.org/10.30919/esee8c783

    Article  CAS  Google Scholar 

  47. Qu K, Sun Z, Shi C, Wang W, Xiao L, Tian J, Huang Z, Guo Z (2021) Dual-acting cellulose nanocomposites filled with carbon nanotubes and zeolitic imidazolate framework-67 (ZIF-67)–derived polyhedral porous Co3O4 for symmetric supercapacitors. Adv Compos Hybrid Mater 4:670–683. https://doi.org/10.1007/s42114-021-00293-2

    Article  CAS  Google Scholar 

  48. Liu H, Xu T, Liang Q, Zhao Q, Zhao D, Si C (2022) Compressible cellulose nanofibrils/reduced graphene oxide composite carbon aerogel for solid-state supercapacitor. Adv Compos Hybrid Mater 5:1168–1179. https://doi.org/10.1007/s42114-022-00427-0

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIP) (No. 2018R1A6A1A03025708).

Author information

Authors and Affiliations

Authors

Contributions

Harishkumarreddy Patnam: designed the work, material preparation, data collection, and wrote the manuscript; Sontyana Adonijah Graham, Punnarao Manchi, Mandar Vasant Paranjape: planned and performed the experiments and collected and analyzed the data; Yun Suk Huh: analyzed the data, review and editing; Jae Su Yu: proposed central idea, review and editing, and finalized this paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yun Suk Huh or Jae Su Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 1971 KB)

Supplementary file2 (MP4 11089 KB)

Supplementary file3 (MP4 12660 KB)

Supplementary file4 (MP4 9465 KB)

Supplementary file5 (MP4 8684 KB)

Supplementary file6 (DOCX 11751 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patnam, H., Graham, S.A., Manchi, P. et al. Highly flexible and harsh temperature-tolerant single-electrode mode triboelectric nanogenerators via biocompatible ionic liquid electrolytes for wearable electronic applications. Adv Compos Hybrid Mater 7, 56 (2024). https://doi.org/10.1007/s42114-024-00845-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s42114-024-00845-2

Keywords

Navigation