Skip to main content
Log in

Investigation of structural, morphology, and conduction mechanism of GO–Fe3O4–TiO2 composite material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The graphene oxide composite (GO), iron oxide (Fe3O4), and titanium dioxide (TiO2) were prepared by the sol–gel process. The surface of GO is coated with TiO2 and Fe3O4 nanoparticles, and the composite contains 10.26% C, 23.70% O, 57.17% Ti, and 8.87% Fe. The formation of anatase TiO2 and magnetite Fe3O4 on the surface of GO was detected by XRD and Raman analysis. The N2 adsorption–desorption isotherm and pore size distribution results showed the formation of a mesoporous material with a specific surface area of 233.3 m2/g, a total pore volume of 0.298 cm3/g, and an average pore diameter of 7.7 nm. The GO–Fe3O4–TiO2 composite’s dielectric characteristics were examined in the frequency and temperature ranges of 0.1 Hz–5 MHz and 293–373 K, respectively. The Nyquist plot suggests the non-Debye conduction behaviour, which may be related to the distribution of relaxation times within the composite material. The contribution of grains and grain boundaries to the total conductivity is confirmed by impedance spectroscopy. Jonscher’s power law was used to examine AC conductivity graphs, and the variation in the exponent “s” revealed that CBH models accurately characterize the conduction mechanism in the composite. The dielectric measurements reveal Maxwell–Wagner polarization and a thermal-activated relaxation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

Not applicable.

References

  1. A.K. Geim, K.S. Novoselov, J. Nat. Mater. (2007). https://doi.org/10.1038/nmat1849

    Article  Google Scholar 

  2. J.H. Chen, C. Jang, S. Xiao, M. Ishigami, M.S. Fuhrer, J. Nat. Nanotechnol. (2008). https://doi.org/10.1038/nnano.2008.58

    Article  Google Scholar 

  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, J Sci. (2004). https://doi.org/10.1126/science.1102896

    Article  Google Scholar 

  4. S. Uruş, M. Çaylar, H. Eskalen, Å. Özgan, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-021-07625-4

    Article  Google Scholar 

  5. M. Zangiabadi, T. Shamspur, A. Saljooqi, A. Mostafavi, J. Appl. Organomet. Chem. (2019). https://doi.org/10.1002/aoc.4813

    Article  Google Scholar 

  6. A.M. Haji, A. Hossein, A. Samadi, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-07777-x

    Article  Google Scholar 

  7. H. Lensch, J. Doerr, A. Schütze, T. Sauerwald, J Sens. Actuators B Chem. (2020). https://doi.org/10.1016/j.snb.2020.128497

    Article  Google Scholar 

  8. M. Morsy, A. Elzwawy, A.I. Abdel-Salam, M.M. Mokhtar, A.B. El Basaty, J. Diam. Relat. Mater. (2022). https://doi.org/10.1016/j.diamond.2022.109040

    Article  Google Scholar 

  9. S. Gonuguntla, S. Sk, A. Tiwari, H. Mandal, P.N. Lakavath, V. Perupoga, U. Pal, J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05848-z

    Article  Google Scholar 

  10. S. Bai, M. Yang, J. Jiang, X. He, J. Zou, Z. Xiong, G. Liao, S. Liu, J. 2D Mater. Appl. (2021). https://doi.org/10.1038/s41699-021-00259-4

    Article  Google Scholar 

  11. M. Yang, Y. Zou, L. Ding, Y. Yu, J. Ma, L. Li, A.F. Rafryanto, J. Zou, H. Wang, J. Carbon Lett. (2023). https://doi.org/10.1007/s42823-022-00456-1

    Article  Google Scholar 

  12. J.-C. Chou, C.-M. Chu, Y.-H. Liao, C.-H. Lai, Y.-J. Lin, P.-H. You, W.-Y. Hsu, C.-C. Lu, Y.-H. Nien, J. IEEE Electron. Devices Soc. 5, 32 (2016). https://doi.org/10.1109/JEDS.2016.2618839

    Article  Google Scholar 

  13. V. Harnchana, S. Chaiyachad, S. Pimanpang, C. Saiyasombat, P. Srepusharawoot, V. Amornkitbamrung, J. Sci. Rep. (2019). https://doi.org/10.1038/s41598-018-38050-z

    Article  Google Scholar 

  14. D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, ACS Nano (2010). https://doi.org/10.1021/nn1006368

    Article  Google Scholar 

  15. A. Angermann, J. Töpfer, J. Mater. Sci. (2008). https://doi.org/10.1007/s10853-008-2738-3

    Article  Google Scholar 

  16. N.K. Cakmak, Z. Said, L.S. Sundar, Z.M. Ali, A.K. Tiwari, J. Powder Technol. (2020). https://doi.org/10.1007/s10853-008-2738-3

    Article  Google Scholar 

  17. M.A. Baghchesara, H.R. Azimi, A.G. Shiravizadeh, M.A.M. Teridi, R. Yousefi, J. Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2018.10.082

    Article  Google Scholar 

  18. V.S. Sumi, M.S. Meera, M.A. Sha, S.M.A. Shibli, J. Hydrog. Energy (2020). https://doi.org/10.1016/j.ijhydene.2019.11.167

    Article  Google Scholar 

  19. A.C. Ferrari, D.M. Basko, Nat. Nanotechnol. 8, 235 (2013)

    Article  CAS  Google Scholar 

  20. H.D. Ngoc, D.M. Xuan, T.M. Van, Catalysts. 10, 1 (2020)

    Google Scholar 

  21. J.C. Parker, R.W. Siegel, J. Mater. Res. (1990). https://doi.org/10.1557/JMR.1990.1246

    Article  Google Scholar 

  22. S. Banerjee, P. Benjwal, M. Singh, K.K. Kar, Appl. Surf. Sci. (2018). https://doi.org/10.1016/j.apsusc.2018.01.085

    Article  Google Scholar 

  23. R. Bardestani, G.S. Patience, S. Kaliaguine, J. Can. J. Chem. Eng. (2019). https://doi.org/10.1002/cjce.23632

    Article  Google Scholar 

  24. N. Yadav, R. Dhar, S. Mod. Tech, Basics Inst. Appl. (2021). https://doi.org/10.1007/978-981-33-6084-6_19

    Article  Google Scholar 

  25. W. Ben Soltan, S. Nasri, M.S. Lassoued, S. Ammar, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-6356-1

    Article  Google Scholar 

  26. A. Rouahi, A. Kahouli, F. Challali, M.-P. Besland, C. Vallée, B. Yangui, S. Salimy, A. Goullet, A. Sylvestre, J. Phys. D Appl. Phys. (2013). https://doi.org/10.1088/0022-3727/46/6/065308

    Article  Google Scholar 

  27. F.I.H. Rhouma, A. Dhahri, N. Farhat, J. Dhahri, K. Khirouni, J. EPJ Web Conf. (2012). https://doi.org/10.1051/epjconf/20122900023

    Article  Google Scholar 

  28. C.G. Koops, J. Phys. Rev. (1951). https://doi.org/10.1103/PhysRev.83.121

    Article  Google Scholar 

  29. V.R. Palkar, J. John, R. Pinto, J. Appl. Phys. Lett. (2002). https://doi.org/10.1063/1.1458695

    Article  Google Scholar 

  30. S. Hcini, A. Omri, M. Boudard, M.L. Bouazizi, A. Dhahri, K. Touileb, J. Mater. Sci. Mater. Electron. (2018). https://doi.org/10.1007/s10854-018-8674-3

    Article  Google Scholar 

  31. A. Guerrero, J. Bisquert, G. Garcia-Belmonte, J. Chem. Rev. (2021). https://doi.org/10.1021/acs.chemrev.1c00214

    Article  Google Scholar 

  32. M. Mumtaz, M. Naveed, B. Amin, M. Imran, M.N. Khan, J. Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.12.029

    Article  Google Scholar 

  33. K. Ben Brahim, A. Oueslati, M. Gargouri, J. RSC Adv. (2018). https://doi.org/10.1039/C8RA07671E

    Article  Google Scholar 

  34. A. Oueslati, J. Ionics. (2017). https://doi.org/10.1007/s11581-016-1878-8

    Article  Google Scholar 

  35. S.T. Hameed, T.F. Qahtan, A.M. Abdelghany, A.H. Oraby, J. Mater. Sci. (2022). https://doi.org/10.1007/s10853-022-07134-7

    Article  Google Scholar 

  36. K. Ben Brahim, A. Oueslati, F. Hlel, M. Gargouri, J. Mater. Res. Bull. (2019). https://doi.org/10.1016/j.materresbull.2019.110505

    Article  Google Scholar 

  37. A.K. Jonscher, J Nat. (1977). https://doi.org/10.1038/267673a0

    Article  Google Scholar 

  38. K. Funke, Prog. Solid State Chem. (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    Article  Google Scholar 

  39. S.R. Elliott, J. Adv. Phys. (1987). https://doi.org/10.1080/00018738700101971

    Article  Google Scholar 

  40. N. Sahu, S. Panigrahi, M. Kar, J. Mater. (2013). https://doi.org/10.1155/2013/802123

    Article  Google Scholar 

  41. A.A. Alkathiri, A.A. Atta, M.S. Refat, S. Shakya, A.M. Hassanien, S.A. Algarni, E.M.A. Ahmed, S.E. Alomariy, M. Alsawat, N. Algethami, J. Rare Earths. (2023). https://doi.org/10.1016/j.jre.2022.03.010

    Article  Google Scholar 

  42. B.P. Choudhary, N.B. Singh, Bull. Mater. Sci. 39, 1651 (2016). https://doi.org/10.1007/s12034-016-1329-1

    Article  CAS  Google Scholar 

  43. L.S. Lobo, A.R. Kumar, J. Non Cryst. Solids. (2019). https://doi.org/10.1016/j.jnoncrysol.2018.11.004

    Article  Google Scholar 

  44. A.M. Badr, H.A. Elshaikh, I.M. Ashraf, J. Mod. Phys. (2011). https://doi.org/10.4236/jmp.2011.21004

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by NKÇ, KBB and AA. The writing of the manuscript was written by AA, AO and MG and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ayten Ateş.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateş, A., brahim, K.b., Çakmak, N.K. et al. Investigation of structural, morphology, and conduction mechanism of GO–Fe3O4–TiO2 composite material. J Mater Sci: Mater Electron 34, 1703 (2023). https://doi.org/10.1007/s10854-023-11126-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11126-x

Navigation