Skip to main content
Log in

Enhanced solar cell efficiency: copper zinc tin sulfide absorber thickness and defect density analysis

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper zinc tin sulfide solar cell (CZTS), Cu2ZnSnS4-based solar cells have shown promising conversion efficiency because of their ease of variation in configurations. In this work, the architecture of a ZnO–Al/i–ZnO/n–CdS/CZTS/Mo solar cell was optimized by using Silvaco Atlas simulation software. In this simulation study, the thickness and defect density of the CZTS layer has been varied to achieve the highest efficiency of 26.58%, with Isc = 36.64 A and Voc = 0.909 V at a defect density of 1.8 × 1012 cm−3. Increase in the layer thickness of CZTS improves the photon absorption and cell efficiency. This study has evidenced the impact of defect density on the absorber layer, including photo-generation rate, recombination rate, and solar cell efficiency. By optimizing the device parameters, it has achieved a fill factor of 79.74% under AM 1.5 illumination, demonstrating the potential for low-cost, highly efficient CZTS solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. A. Umar, P.K. Singh, D.K. Dwivedi, A.A. Ibrahim, M.A.M. Alhamami, H. Qasem, S. Akbar, S. Baskoutas, Design and simulation of lead-free perovskite solar cells with a hole transport layer made of NiO nanocomposite. Sci. Adv. Mater. 14, 1511–1517 (2022)

    Article  CAS  Google Scholar 

  2. D.K. Shah, K.C. Devendra, D. Parajuli, M.S. Akhtar, C.Y. Kim, O.-B. Yang, A computational study of carrier lifetime, doping concentration, and thickness of window layer for GaAs solar cell based on Al2O3 antireflection layer. Sol. Energy 234, 330–337 (2022)

    Article  CAS  Google Scholar 

  3. J. Wang, R. Fu, S. Wen et al., Progress and current challenges for CO2 capture materials from ambient air. Adv. Compos. Hybrid Mater. 5, 2721–2759 (2022)

    Article  CAS  Google Scholar 

  4. A. Muhammad, S.U. Rather, M. Umar, H. Bamufleh, A.M. Ali, T.E. Youssef, Carbon dioxide (CO2) capture in alkanolamines impregnated activated carbon developed from date stones. Sci. Adv. Mater. 13, 98–104 (2021)

    Article  CAS  Google Scholar 

  5. E. Chamanehpour, M.H. Sayadi, M. Hajiani, A hierarchical graphitic carbon nitride supported by metal–organic framework and copper nanocomposite as a novel bifunctional catalyst with long-term stability for enhanced carbon dioxide photoreduction under solar light irradiation. Adv. Compos. Hybrid Mater. 5, 2461–2477 (2022)

    Article  CAS  Google Scholar 

  6. Y. Li, L. Li, S. Luo et al., The role of K in tuning oxidative dehydrogenation of ethane with CO2 to be selective toward ethylene. Adv. Compos. Hybrid Mater. 4, 793–805 (2021)

    Article  CAS  Google Scholar 

  7. D. Ping, F. Yi, G. Zhang, S. Wu, S. Fang, K. Hu, B.B. Xu, J. Ren, Z. Guo, NH4Cl-assisted preparation of single Ni sites anchored carbon nanosheet catalysts for highly efficient carbon dioxide electroreduction. J. Mater. Sci. Technol. 142, 1–9 (2023)

    Article  Google Scholar 

  8. D.K. Shah, K.C. Devendra, M. Muddassir, M.S. Akhtar, C.Y. Kim, O.-B. Yang, A simulation approach for investigating the performances of cadmium telluride solar cells using doping concentrations, carrier lifetimes, thickness of layers, and band gaps. Sol. Energy 216, 259–265 (2021)

    Article  CAS  Google Scholar 

  9. A. Shaheen, S. Hussain, G.J. Qiao, M.H. Mahmoud, H. Fouad, M.S. Akhtar, Outstanding electrochemical supercapacitor performances of NiCo2O4 nanoflowers. Sci. Adv. Mater. 13, 2460–2466 (2021)

    Article  CAS  Google Scholar 

  10. C. Lai, Y. Guo, H. Zhao et al., High-performance double “ion-buffering reservoirs” of asymmetric supercapacitors enabled by battery-type hierarchical porous sandwich-like Co3O4 and 3D graphene aerogels. Adv. Compos. Hybrid Mater. 5, 2557–2574 (2022)

    Article  CAS  Google Scholar 

  11. W. Yang, D. Peng, H. Kimura et al., Honeycomb-like nitrogen-doped porous carbon decorated with Co3O4 nanoparticles for superior electrochemical performance pseudo-capacitive lithium storage and supercapacitors. Adv. Compos. Hybrid Mater. 5, 3146–3157 (2022)

    Article  CAS  Google Scholar 

  12. Y. Zhao, Y. Li, D. Zhang, S. Song, J. Wang, Y. Ke, In-Situ grown sheet-like nanostructure of NiCo2S4 for high performance supercapacitors. Sci. Adv. Mater. 13, 1065–1069 (2021)

    Article  CAS  Google Scholar 

  13. K. Cui, L. Zhu, W. Guo, P. Shuang, X. Yang, X. Chai, W. Du, Recent advance of Ni–Co–X (X = O, S, Se, Te) bimetallic compound nanoarray electrode materials applied in supercapacitors. Sci. Adv. Mater. 14(5), 819–828 (2022)

    Article  CAS  Google Scholar 

  14. J. Yang, L. Tong, A.S. Alsubaie et al., Hybrid proton exchange membrane used in fuel cell with amino-functionalized metal–organic framework in sulfonated polyimide to construct efficient ion transport channel. Adv. Compos. Hybrid Mater. 5, 834–842 (2022)

    Article  CAS  Google Scholar 

  15. R.D. Prasad, C.B. Desai, O.P. Srivastava, S.R. Prasad, T.S. Bhat, B. Kamble, P. Sarvalkar, A. Kanthe, R.D. Kale, S. Banga, A. Patil, A. Saxena, S. Saxena, K. Saxena, A.K. Sharma, R.Y. Prasad, A critical review on recent developments in advanced supercapacitors for veterinary medicine. ES Food Agrofor. 11, 805 (2023)

    CAS  Google Scholar 

  16. Mu. Wei Pan, D.X. Zhang, X. Sun, Supercapacitance property study of 3D open-framework prussian blue in neutral electrolyte. Sci. Adv. Mater. 13, 438–448 (2021)

    Google Scholar 

  17. C. Gao, W. Deng, F. Pan, X. Feng, Y. Li, Superhydrophobic electrospun PVDF membranes with silanization and fluorosilanization co-functionalized CNTs for improved direct contact membrane distillation. Eng. Sci. 9, 35–43 (2020)

    CAS  Google Scholar 

  18. F. Ahmed, P.M.Z. Hasan, S. Kumar, N.M. Shaalan, A. Aljaafari, N. Arshi, M. Albossed, G. Almutairi, B. Alotaibi, A facile method for the preparation of a-Fe2O3/reduced graphene oxides nanocomposites as electrode materials for high performance supercapacitors. Sci. Adv. Mater. 14, 1342–1347 (2022)

    Article  CAS  Google Scholar 

  19. C. Dang, Q. Mu, X. Xie et al., Recent progress in cathode catalyst for nonaqueous lithium oxygen batteries: a review. Adv. Compos. Hybrid Mater. 5, 606–626 (2022)

    Article  Google Scholar 

  20. D.K. Maurya, R. Dhanusuraman, Z. Guo et al., Composite polymer electrolytes: progress, challenges, and future outlook for sodium-ion batteries. Adv. Compos. Hybrid Mater. 5, 2651–2674 (2022)

    Article  CAS  Google Scholar 

  21. H. Soonmin, S. Wagh, A. Kadier, I.A. Gondal, N.P.B.A. Azim, M.K. Mishra, Renewable energy technologies. Sustain. Innov. Impact 2018, 237–250 (2018)

    Google Scholar 

  22. D. Kc, R. Wagle, R. Gaib, A. Shrivastava, L.N. Mishra, Modelling and simulation of AlGaAs/GaAs solar cell. Am. J. Eng. Res. 9, 4 (2020)

    Google Scholar 

  23. D.K. Shah, K.C. Devendra, T.-G. Kim, M.S. Akhtar, C.Y. Kim, O.-B. Yang, Influence of minority charge carrier lifetime and concentration on crystalline silicon solar cells based on double antireflection coating: a simulation study. Opt. Mater. 121, 111500 (2021)

    Article  CAS  Google Scholar 

  24. J. Müller, B. Rech, J. Springer, M. Vanecek, TCO and light trapping in silicon thin film solar cells. Sol. Energy. 77, 917–930 (2004)

    Article  Google Scholar 

  25. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, W.C. Sinke, Photovoltaic materials: present efficiencies and future challenges. Science 352, 4424 (2016)

    Article  Google Scholar 

  26. D.K. Shah, K.C. Devendra, J. Choi, S.H. Kang, M.S. Akhtar, C.Y. Kim, O.-B. Yang, Determinantal study on the thickness of graphene oxide as arc layer for silicon solar cells using: a simulation approach. Mater. Sci. Semicond. Process. 147, 106695 (2022)

    Article  CAS  Google Scholar 

  27. N. Asim et al., A review on the role of materials science in solar cells. Renew. Sustain. Energy Rev. 16, 5834–5847 (2012)

    Article  CAS  Google Scholar 

  28. P. Jackson et al., Effects of heavy alkali elements in Cu(In, Ga)Se2 solar cells with efficiencies up to 22.6%. Phys. Status Solidi Rapid Res. Lett. 10, 583–586 (2016)

    Article  CAS  Google Scholar 

  29. X. Li, P. Li, Z. Wu, D. Luo, H.-Y. Yu, L. Zheng-Hong, Review and perspective of materials for flexible solar cells. Mater. Rep.: Energy 1(1), 10000 (2021)

    Google Scholar 

  30. J.D. Poplawsky et al., Structural and compositional dependence of the CdTexSe1x alloy layer photoactivity in CdTe-based solar cells. Nat. Commun. 7, 1–10 (2016)

    Google Scholar 

  31. K.J. Yang, D.H. Son, S.J. Sung, J.H. Sim, Y.I. Kim, S.N. Park, D.H. Kim, A band-gap-graded CZTSSe solar cell with 12.3% efficiency. J. Mater. Chem. A 4(26), 10151–10158 (2016)

    Article  CAS  Google Scholar 

  32. H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells. Thin Solid Films 517(7), 2455–2460 (2009)

    Article  CAS  Google Scholar 

  33. C. Wadia, A.P. Alivisatos, D.M. Kammen, Materials availability expands the opportunity for large-scale photovoltaics deployment. Environ. Sci. Technol. 43, 2072 (2009)

    Article  CAS  Google Scholar 

  34. A.T. Supekar, P.K. Bhujbal, S.A. Salunke, S.M. Rathod, S.P. Patole, H.M. Pathan, Bismuth sulfide and antimony sulfide-based solar cells: a review. ES Energy Environ. 19, 848 (2023)

    CAS  Google Scholar 

  35. A. Umar, P.K. Singh, D.K. Dwivedi, A.A. Ibrahim, M.A.M. Alhamami, S. Baskoutas, Design and simulation of lead-free perovskite solar cells with a hole transport layer made of NiO nanocomposite. Sci. Adv. Mater. 14, 1539–1545 (2022)

    Article  Google Scholar 

  36. A. Umar, P. Srivastava, S. Rai, P. Lohia, D.K. Dwivedi, H. Algadi, S. Baskoutas, High-performance lead-free perovskite solar cell: a theoretical study, emerging. Mater. Res. 12, 1–6 (2023)

    Google Scholar 

  37. Y. Cao, M. Weng, M.H.H. Mahmoud et al., Flame-retardant and leakage-proof phase change composites based on MXene/polyimide aerogels toward solar thermal energy harvesting. Adv. Compos. Hybrid Mater. 5, 1253–1267 (2022)

    Article  CAS  Google Scholar 

  38. E.-B. Kim, M.S. Akhtar, S. Ameen, A. Umar, H. Qasem, H.-G. Rubahn, M. Shkir, A. Kaushik, Y.K. Mishra, Improving the performance of 2D perovskite solar cells by carrier trappings and minifying the grain boundaries. Nano Energy 102, 107673 (2022)

    Article  CAS  Google Scholar 

  39. Y. Guo, T. Liu, H. He et al., Bifunctional interface modification for efficient and UV-robust α-Fe2O3-based planar organic–inorganic hybrid perovskite solar cells. Adv. Compos. Hybrid Mater. 5, 3212–3222 (2022)

    Article  CAS  Google Scholar 

  40. P. Srivastava, S. Rai, P. Lohia, D.K. Dwivedi, H. Qasem, A. Umar, S. Akbar, H. Algadi, S. Baskoutas, Theoretical study of perovskite solar cell for enhancement of device performance using SCAPS-1D. Phys. Scripta 97, 125004 (2022)

    Article  Google Scholar 

  41. H. Gao, J. Li, Y. Liu et al., Shape memory polymer solar cells with active deformation. Adv. Compos. Hybrid Mater. 4, 957–965 (2021)

    Article  CAS  Google Scholar 

  42. A. Umar, P.K. Singh, D.K. Dwivedi, H. Algadi, A.A. Ibrahim, M.A.M. Alhamami, S. Baskoutas, High power-conversion efficiency of lead-free perovskite solar cells: a theoretical investigation. Micromachines 13(12), 2201 (2022)

    Article  Google Scholar 

  43. C. Sun, Y. Zou, C. Qin et al., Temperature effect of photovoltaic cells: a review. Adv. Compos. Hybrid Mater. 5, 2675–2699 (2022)

    Article  Google Scholar 

  44. H. Ullah, B. Marí, S. Ruiz, Effect of defects on the performance of some photovoltaic solar cells: an introduction to research methods to engineering students. SEFI Conf. 1, 12–15 (2016)

    Google Scholar 

  45. O. Breitenstein, J. Bauer, P.P. Altermatt, K. Ramspeck, Influence of defects on solar cell characteristics. Solid State Phenom. 156, 1–10 (2010)

    Google Scholar 

  46. M.A. El-Rashidy, An efficient and portable solar cell defect detection system. Neural Comput. Appl. 34, 18497–18509 (2022)

    Article  Google Scholar 

  47. A. Zekry, A. Shaker, M. Salem, Solar cells and arrays: principles, analysis, and design, in Advances in renewable energies and power technologies. (Elsevier, Amsterdam, 2018), pp.3–56

    Chapter  Google Scholar 

  48. J. R. Davis, Capacitance measurements of defects in solar cells: checking the model assumptions. (2015).

  49. S. Binetti, M. Acciarri, J. Libal, Impact of extended defects on the electrical properties of solar grade multicrystalline silicon for solar cell application. Solid State Phenom. 131, 419–424 (2008)

    Google Scholar 

  50. K. Buehler, K. Kaufmann, M. Patzold, M. Sprenger, S. Schoenfelder, Identifying defects on solar cells using magnetic field measurements and artificial intelligence trained by a finite-element-model. EPJ Photovolt. 14, 12 (2023)

    Article  CAS  Google Scholar 

  51. Y.E. Romanyuk, C.M. Fella, A.R. Uhl, M. Werner, A.N. Tiwari, T. Schnabel, E. Ahlswede, Recent trends in direct solution coating of kesterite absorber layers in solar cells. Sol. Energy Mater. Sol. Cells. 119, 181 (2013)

    Article  CAS  Google Scholar 

  52. K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quater-nary semiconductor thin films. Jpn. J. Appl. Phys. 11, 2094–2097 (1988)

    Google Scholar 

  53. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4(7), 1301465 (2014)

    Article  Google Scholar 

  54. A. Cherouana, R. Labbani, Study of CZTS and CZTSSe solar cells for buffer layers selection. Appl. Surf. Sci. 424(2), 251–255 (2017)

    Article  CAS  Google Scholar 

  55. W. Zhao, W. Zhou, X. Miao, Numerical simulation of CZTS thin film solar cell, NEMS proceedings of IEEE, Kyoto, Japan, March, 502–506 (2012).

  56. P. Lin, L. Lin, J. Yu, S. Cheng, P. Lu, Q. Zheng, Numerical simulation of Cu2ZnSnS4 based solar cells with In2S3 buffer layers by SCAPS-1D. J. Appl. Sci. Eng. 17(4), 383–390 (2014)

    Google Scholar 

  57. D. Talukder, R. Pal, M.N. Hasan, M.F. Wahid, Numerical simulation of CZTS solar cell with ZnSe buffer layer. In 2021 International conference on automation, control and mechatronics for industry 4.0 (ACMI) (1–6) IEEE (July 2021).

  58. Atlas User’s Manual, Silvaco International, Santa Clara, CA, (2005).

  59. Atlas User’s Manual, Silvaco International, Santa Clara, CA, (2016).

  60. X. Liu, X. Hao, S. Huang, G. Conibeer, Numerical modeling of CZTS solar cells, 39th IEEE photovoltaic specialists conference (2013).

  61. S. Fadili, B. Hartiti, A. Kotbi, A. Ridah, P. Thevenin, Numerical simulation of solar cells based CZTS buffer layer (ZnO1XSX) using SCAPS-1D software. J. Fund. Appl. Sci. 9(2), 1001–1011 (2017)

    Article  CAS  Google Scholar 

  62. R. Tiwari, P. Dubey, P. Lohia, D.K. Dwivedi, H. Fouad, M.S. Akhtar, Simulation engineering in quantum dots for efficient photovoltaic solar cell using copper iodide as hole transport layer. J. Nanoelectron. Optoelectron. 16(12), 1897–1904 (2021)

    Article  CAS  Google Scholar 

  63. K. Zhang, Z. Su, L. Zhao, C. Yan, F. Liu, H. Cui, X. Hao, Y. Liu, Improving the conversion efficiency of Cu2ZnSnS4 solar cell by low pressure sulfurization. Appl. Phys. Lett. 104, 141101 (2014)

    Article  Google Scholar 

  64. O.K. Simya, A. Mahaboobbatcha, K. Balachande, A comparative study on the performance of Kesterite based thin film solar cells using SCAPS simulation program. Superlattices Microstruct. 82, 248–261 (2015)

    Article  CAS  Google Scholar 

  65. A.S. Mathur, S. Upadhyay, P.P. Singh, B. Sharma, P. Arora, V.K. Rajput, B.P. Singh, Role of defect density in absorber layer of ternary chalcogenide Cu2SnS3 solar cell. Opt. Mater. 119, 111314 (2021)

    Article  CAS  Google Scholar 

  66. M. Mirzaei, J. Hasanzadeh, A.A. Ziabari, Efficiency enhancement of CZTS solar cells using Al plasmonic nanoparticles: the effect of size and period of nanoparticles. J. Electron. Mater. 49(12), 7168–7178 (2020)

    Article  Google Scholar 

  67. http://www.pveducation.org/pvcdrom/pn-junction/band-gap (Accessed on 21 March 2023)

  68. D. Kc, D.K. Shah, A. Shrivastava, Computational study on the performance of zinc selenide as window layer for efficient GaAs solar cell. Mater. Today: Proc. 49, 2580–2583 (2022)

    Article  Google Scholar 

  69. K. Ito, Copper zinc tin sulfide-based thin-film solar cells (John Wiley & Sons, 2014)

    Book  Google Scholar 

  70. M. Cai, N. Ishida, X. Li, X. Yang, T. Noda, Y. Wu, L. Han, Control of electrical, potential distribution for high-performance perovskite solar cells. Joule 2(2), 296–306 (2018)

    Article  CAS  Google Scholar 

  71. T.J. Huang, X. Yin, G. Qi, H. Gong, CZTS-based materials and interfaces and their effects on the performance of thin film solar cells. Phys. Status Solidi Rapid Res. Lett. 8(09), 735–762 (2014)

    Article  CAS  Google Scholar 

  72. H. Ferhati, F. Djeffal, Graded band-gap engineering for increased efficiency in CZTS solar cells. Opt. Mater. 76, 393–399 (2018)

    Article  CAS  Google Scholar 

  73. F. Belarbi, W. Rahal, D. Rached, M. Adnane, A comparative study of different buffer layers for CZTS solar cell using scaps-1D simulation program. Optik 216, 164743 (2020)

    Article  CAS  Google Scholar 

  74. R. Mahbub, M. Islam, S. Anwar, F. Satter, S.S. Satter, S.M. Ullah, Simulation of CZTS thin film solar cell for different buffer layers for high efficiency performance. South Asian J. Eng. Technol. 2(52), 1–10 (2016)

    Google Scholar 

  75. A. Benami, Effect of CZTS parameters on photovoltaic solar cell from numerical simulation. J. Energy Power Eng. 13, 32–36 (2019)

    CAS  Google Scholar 

  76. M.D. Wanda, S. Ouédraogo, F. Tchoffo, F. Zougmoré, J.M.B. Ndjaka, Numerical investigations and analysis of Cu2ZnSnS4 based solar cells by SCAPS-1D. Int. J. Photoenergy (2016). https://doi.org/10.1155/2016/2152018

    Article  Google Scholar 

  77. M.A. Rahman, Enhancing the photovoltaic performance of Cd-free Cu2ZnSnS4 heterojunction solar cells using SnS HTL and TiO2 ETL. Sol. Energy 215, 64–76 (2021)

    Article  Google Scholar 

  78. R. Kottayi, D.K. Maurya, R. Sittaramane, S. Angaiah, Recent developments in metal chalcogenides based quantum dot sensitized solar cells. ES Energy Environ. 18, 1–40 (2022)

    CAS  Google Scholar 

  79. B.M. Sakunde, S. Patole, H.M. Pathan, Numerical modeling to improve the efficiency of cadmium sulfide/copper indium sulfide (CdS/CuInS2) thin film-based solar cells. ES Energy Environ. 18, 111–121 (2022)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resources Program in Energy Technology of the Korea Institute of Energy Technology Evaluation and Planning (KETEP), granted financial resource from the Ministry of Trade, Industry & Energy, Republic of Korea (No.20204010600470). This research was supported by research funds of Jeonbuk National University in 2023. The authors are thankful to the Deanship of Scientific Research at Najran University, Najran, Kingdom of Saudi Arabia for funding under the Research Group funding program Grant No. NU/RG/SERC/12/49.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

This work is the collaborative development of all the authors. DKC: original draft, software, conceptualization. DKS: editing-draft, methodology, revision. SK: investigation, formal analysis. NB: data curation, investigation, validation. DRA: data curation, resources. KBK: software. AU: investigation, data curation, editing-draft, writing-review, and editing. AI, MAMA: data curation. MSA, SB: writing-review and editing. OBA: funding acquisition, writing review, supervision, and editing. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to M. Shaheer Akhtar or O.-Bong Yang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devendra, K.C., Shah, D.K., Kumar, S. et al. Enhanced solar cell efficiency: copper zinc tin sulfide absorber thickness and defect density analysis. J Mater Sci: Mater Electron 34, 1699 (2023). https://doi.org/10.1007/s10854-023-11125-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11125-y

Navigation