Skip to main content
Log in

Rational design of flower-like core–shell Fe3O4@SiO2@MoSe2 composites for high performance electromagnetic wave absorption

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transition metal dichalcogenides (TMDCs) are considered to have remarkable electromagnetic (EM) wave attenuation due to their perfect dielectric property and graphene-like structure, but they still often fail to function due to impedance mismatch problems. Here, using a multilayer coating strategy, we prepared flower-like Fe3O4@SiO2@MoSe2 absorbers with core–shell structure. SiO2 can form the Fe3O4-SiO2 and SiO2-MoSe2 heterogeneous interfaces when it is applied to the Fe3O4 surface as an impedance matching layer in the Fe3O4@SiO2@MoSe2 composite, increasing the interfacial polarization loss to the absorber. In addition, Fe3O4@SiO2 as a magnetic core also reduces the relative density of the substance compared to Fe3O4. Products with the absorption performance of various electromagnetic waves were produced by varying the amount of magnetic components (Fe3O4@SiO2) in the absorber. With a minimal reflect loss (RL) of − 51.86 dB and an effective absorption bandwidth (EAB, RL < -10 dB) of 4.96 GHz at a matching thickness of 1.8 mm, the Fe3O4@SiO2@MoSe2 (sample S3) demonstrated exceptional properties in EM wave absorption. In addition, we synthesized Fe3O4@MoSe2 and determined its RL value and maximum EAB (EABmax) in order to highlight the significance of the impedance matching layer SiO2. Fe3O4@MoSe2 appears to perform less well than Fe3O4@SiO2@MoSe2 in terms of EM wave absorption, with a minimal RL value of -50.20 dB and an EABmax of only 2.00 GHz at the matching thickness of 4.8 mm. The remarkable properties in EM wave absorption of Fe3O4@SiO2@MoSe2 is the result of the combined effect from impedance match and loss mechanisms of various compositions, so the component SiO2 has a non-negligible function as an impedance matching layer. This study has blazed the trail for developing the lightweight and excellent performance of absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2
Fig. 7

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. L. Gai, Y. Zhao, G. Song et al., Construction of core-shell PPy@MoS2 with nanotube-like heterostructures for electromagnetic wave absorption: Assembly and enhanced mechanism. Compos. Part Appl. Sci. Manuf. 136, 105965 (2020). https://doi.org/10.1016/j.compositesa.2020.105965

    Article  CAS  Google Scholar 

  2. S. Gao, Y. Zhang, H. Xing, H. Li, Controlled reduction synthesis of yolk-shell magnetic@void@C for electromagnetic wave absorption. Chem. Eng. J. 387, 124149 (2020). https://doi.org/10.1016/j.cej.2020.124149

    Article  CAS  Google Scholar 

  3. Z. Gao, D. Lan, L. Zhang, H. Wu, Simultaneous Manipulation of Interfacial and Defects Polarization toward Zn/Co Phase and Ion Hybrids for Electromagnetic Wave Absorption. Adv Funct Mater. 31(50), 2106677 (2021). https://doi.org/10.1002/adfm.202106677

    Article  CAS  Google Scholar 

  4. J. Liu, L. Zhang, D. Zang, H. Wu, A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv Funct Mater. 31(45), 2105018 (2021). https://doi.org/10.1002/adfm.202105018

    Article  CAS  Google Scholar 

  5. W. Huang, Z. Tong, Y. Bi et al., Synthesis and microwave absorption properties of coralloid core-shell structure NiS/Ni3S4@PPy@MoS2 nanowires. J Colloid Interface Sci. 599, 262–270 (2021). https://doi.org/10.1016/j.jcis.2021.04.107

    Article  CAS  Google Scholar 

  6. Y. Yuan, S. Wei, Y. Liang et al., Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties. J Alloys Compd. 867, 159040 (2021). https://doi.org/10.1016/j.jallcom.2021.159040

    Article  CAS  Google Scholar 

  7. L. Wang, M. Huang, X. Qian et al., Confined magnetic-dielectric balance boosted electromagnetic wave absorption. Small 17(30), 2100970 (2021). https://doi.org/10.1002/smll.202100970

    Article  CAS  Google Scholar 

  8. F. Zeng, L. Li, C. Liu, Z. Lin, Hollow CoS2 nanobubble prisms derived from ZIF-67 through facile two-step self-engaged method for electromagnetic wave absorption. ChemistrySelect 6(17), 4344–4353 (2021). https://doi.org/10.1002/slct.202100792

    Article  CAS  Google Scholar 

  9. M. Ning, P. Jiang, W. Ding et al., Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 31(19), 2011229 (2021). https://doi.org/10.1002/adfm.202011229

    Article  CAS  Google Scholar 

  10. H. Zhang, J. Cheng, H. Wang et al., Initiating VB-group laminated NbS2 electromagnetic wave absorber toward superior absorption bandwidth as large as 6.48 GHz through phase engineering modulation. Adv. Funct. Mater. (2021). https://doi.org/10.1002/adfm.202108194

    Article  Google Scholar 

  11. X. Cao, X. Liu, J. Zhu et al., Optimal particle distribution induced interfacial polarization in hollow double-shell composites for electromagnetic waves absorption performance. J. Colloid Interface Sci. 634, 268–278 (2023). https://doi.org/10.1016/j.jcis.2022.12.048

    Article  CAS  Google Scholar 

  12. L. Najafi, S. Bellani, R. Oropesa-Nuñez et al., Engineered MoSe2 -based heterostructures for efficient electrochemical hydrogen evolution reaction. Adv. Energy Mater. 8(16), 1703212 (2018). https://doi.org/10.1002/aenm.201703212

    Article  CAS  Google Scholar 

  13. H. Wang, X. Lan, D. Jiang et al., Sodium storage and transport properties in pyrolysis synthesized MoSe2 nanoplates for high performance sodium-ion batteries. J Power Sources. 283, 187–194 (2015). https://doi.org/10.1016/j.jpowsour.2015.02.096

    Article  CAS  Google Scholar 

  14. Md.S. Hassan, S. Bera, D. Gupta, S.K. Ray, S. Sapra, MoSe2–Cu2S vertical p–n Nanoheterostructures for high-performance photodetectors. ACS Appl. Mater. Interf. 11(4), 4074–4083 (2019). https://doi.org/10.1021/acsami.8b16205

    Article  CAS  Google Scholar 

  15. I.S. Kwon, I.H. Kwak, T.T. Debela et al., Se-Rich MoSe2 nanosheets and their superior electrocatalytic performance for hydrogen evolution reaction. ACS Nano 14(5), 6295–6304 (2020). https://doi.org/10.1021/acsnano.0c02593

    Article  CAS  Google Scholar 

  16. H. Mittal, M. Khanuja, Hydrothermal in-situ synthesis of MoSe2-polypyrrole nanocomposite for efficient photocatalytic degradation of dyes under dark and visible light irradiation. Sep. Purif. Technol. 254, 117508 (2021). https://doi.org/10.1016/j.seppur.2020.117508

    Article  CAS  Google Scholar 

  17. Y. Cheng, Y. Zhao, H. Zhao et al., Engineering morphology configurations of hierarchical flower-like MoSe2 spheres enable excellent low-frequency and selective microwave response properties. Chem. Eng. J. 372, 390–398 (2019). https://doi.org/10.1016/j.cej.2019.04.174

    Article  CAS  Google Scholar 

  18. H. Wang, J. Lu, J. Liang, J. Yu, M. Yan, C. Wu, Evolution from core-shell, yolk-shell to hollow structure of hierarchical SiO2@MoSe2@FeNi3 for enhanced electromagnetic wave absorption. J. Alloys Compd. 884, 161020 (2021). https://doi.org/10.1016/j.jallcom.2021.161020

    Article  CAS  Google Scholar 

  19. B. Deng, Z. Liu, F. Pan, Z. Xiang, X. Zhang, W. Lu, Electrostatically self-assembled two-dimensional magnetized MXene/hollow Fe3O4 nanoparticle hybrids with high electromagnetic absorption performance and improved impendence matching. J Mater. Chem A. 9(6), 3500–3510 (2021). https://doi.org/10.1039/D0TA10551A

    Article  CAS  Google Scholar 

  20. J. Liao, M. Ye, A. Han, J. Guo, C. Chen, Nanosheet architecture of Cu9S5 loaded with Fe3O4 microspheres for efficient electromagnetic wave absorption. Ceram. Int. 47(7), 8803–8811 (2021). https://doi.org/10.1016/j.ceramint.2020.11.246

    Article  CAS  Google Scholar 

  21. L.L. Adebayo, H. Soleimani, N. Yahya et al., Recent advances in the development OF Fe3O4-BASED microwave absorbing materials. Ceram. Int. 46(2), 1249–1268 (2020). https://doi.org/10.1016/j.ceramint.2019.09.209

    Article  CAS  Google Scholar 

  22. J. Liu, H. Liang, H. Wu, Hierarchical flower-like Fe3O4/MoS2 composites for selective broadband electromagnetic wave absorption performance. Compos. Part Appl. Sci. Manuf. 130, 105760 (2020). https://doi.org/10.1016/j.compositesa.2019.105760

    Article  CAS  Google Scholar 

  23. Z. Wu, D. Tan, K. Tian et al., Facile preparation of core−shell Fe3O4@polypyrrole composites with superior electromagnetic wave absorption properties. J. Phys. Chem. C. 121(29), 15784–15792 (2017). https://doi.org/10.1021/acs.jpcc.7b04230

    Article  CAS  Google Scholar 

  24. G. Xiang, M. Chen, Z. Ni, Y. Shen, L. Xu, Synthesis of a hollow-structured flower-like Fe3O4 @MoS2 composite and its microwave-absorption properties. RSC Adv. 11(33), 20180–20190 (2021). https://doi.org/10.1039/D1RA02095A

    Article  CAS  Google Scholar 

  25. Q. Liu, Q. Cao, H. Bi et al., CoNi@SiO2@TiO2 and CoNi@Air@TiO2 microspheres with strong wideband microwave absorption. Adv. Mater. 28(3), 486–490 (2016). https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

  26. S. Chong, X. Wei, Y. Wu et al., Expanded MoSe 2 nanosheets vertically bonded on reduced graphene oxide for sodium and potassium-ion storage. ACS Appl. Mater. Interf. 13(11), 13158–13169 (2021). https://doi.org/10.1021/acsami.0c22430

    Article  CAS  Google Scholar 

  27. Z. Zhang, X. Yang, Y. Fu, K. Du, Ultrathin molybdenum diselenide nanosheets anchored on multi-walled carbon nanotubes as anode composites for high performance sodium-ion batteries. J. Power Sour. 296, 2–9 (2015). https://doi.org/10.1016/j.jpowsour.2015.07.008

    Article  CAS  Google Scholar 

  28. H. Shi, H. Zhang, M. Li, Y. Wang, D. Wang, Nanoflower-like 1T/2H mixed-phase MoSe2 as an efficient electrocatalyst for hydrogen evolution. J. Alloys. Compd. 878, 160381 (2021). https://doi.org/10.1016/j.jallcom.2021.160381

    Article  CAS  Google Scholar 

  29. H. Wu, J. Liu, H. Liang, D. Zang, Sandwich-like Fe3O4/Fe3S4 composites for electromagnetic wave absorption. Chem. Eng. J. 393, 124743 (2020). https://doi.org/10.1016/j.cej.2020.124743

    Article  CAS  Google Scholar 

  30. Y. Yin, Y. Zhang, T. Gao et al., Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv. Mater. 29(28), 1700311 (2017). https://doi.org/10.1002/adma.201700311

    Article  CAS  Google Scholar 

  31. S. Deng, Y. Zhong, Y. Zeng et al., Directional construction of vertical nitrogen-doped 1T–2H MoSe2/graphene Shell/Core Nanoflake arrays for efficient hydrogen evolution reaction. Adv. Mater. 29(21), 1700748 (2017). https://doi.org/10.1002/adma.201700748

    Article  CAS  Google Scholar 

  32. J. Ma, X. Wang, W. Cao et al., A facile fabrication and highly tunable microwave absorption of 3D flower-like Co3O4-rGO hybrid-architectures. Chem Eng J. 339, 487–498 (2018). https://doi.org/10.1016/j.cej.2018.01.152

    Article  CAS  Google Scholar 

  33. J. Liao, M. Ye, A. Han, J. Guo, Q. Liu, G. Yu, Boosted electromagnetic wave absorption performance from multiple loss mechanisms in flower-like Cu9S5/RGO composites. Carbon 177, 115–127 (2021). https://doi.org/10.1016/j.carbon.2021.02.060

    Article  CAS  Google Scholar 

  34. C. Wang, B. Wang, X. Cao et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption. Compos. Part B Eng. 205, 108529 (2021). https://doi.org/10.1016/j.compositesb.2020.108529

    Article  CAS  Google Scholar 

  35. B. Quan, X. Liang, G. Ji et al., Dielectric polarization in electromagnetic wave absorption: review and perspective. J Alloys Compd. 728, 1065–1075 (2017). https://doi.org/10.1016/j.jallcom.2017.09.082

    Article  CAS  Google Scholar 

  36. D. Zhang, J. Chai, J. Cheng et al., Highly efficient microwave absorption properties and broadened absorption bandwidth of MoS2-iron oxide hybrids and MoS2-based reduced graphene oxide hybrids with Hetero-structures. Appl. Surf. Sci. 462, 872–882 (2018). https://doi.org/10.1016/j.apsusc.2018.08.152

    Article  CAS  Google Scholar 

  37. J. Wang, B. Wang, Z. Wang et al., Synthesis of 3D flower-like ZnO/ZnCo2O4 composites with the heterogeneous interface for excellent electromagnetic wave absorption properties. J. Colloid Interf. Sci. 586, 479–490 (2021). https://doi.org/10.1016/j.jcis.2020.10.111

    Article  CAS  Google Scholar 

  38. F. Wang, W. Gu, J. Chen et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption. J. Mater. Sci. Technol. 105, 92–100 (2022). https://doi.org/10.1016/j.jmst.2021.06.058

    Article  CAS  Google Scholar 

  39. T. Kim, J. Lee, K. Lee, B. Park, B.M. Jung, S.B. Lee, Magnetic and dispersible FeCoNi-graphene film produced without heat treatment for electromagnetic wave absorption. Chem. Eng. J. 361, 1182–1189 (2019). https://doi.org/10.1016/j.cej.2018.12.172

    Article  CAS  Google Scholar 

  40. X. Shu, J. Zhou, W. Lian et al., Size-morphology control, surface reaction mechanism and excellent electromagnetic wave absorption characteristics of Fe3O4 hollow spheres. J. Alloys Compd. 854, 157087 (2021). https://doi.org/10.1016/j.jallcom.2020.157087

    Article  CAS  Google Scholar 

  41. L. Zhang, P. Dai, X. Yu et al., The preparation of Fe3O4 cube-like nanoparticles via the ethanol reduction of α-Fe2O3 and the study of its electromagnetic wave absorption. Appl. Surf. Sci. 359, 723–728 (2015). https://doi.org/10.1016/j.apsusc.2015.10.163

    Article  CAS  Google Scholar 

  42. S. Dong, W. Zhang, X. Zhang, P. Hu, J. Han, Designable synthesis of core-shell SiCw@C heterostructures with thickness-dependent electromagnetic wave absorption between the whole X-band and Ku-band. Chem. Eng. J. 354, 767–776 (2018). https://doi.org/10.1016/j.cej.2018.08.062

    Article  CAS  Google Scholar 

  43. Z. Li, H. Lin, S. Ding et al., Synthesis and enhanced electromagnetic wave absorption performances of Fe3O4@C decorated walnut shell-derived porous carbon. Carbon 167, 148–159 (2020). https://doi.org/10.1016/j.carbon.2020.05.070

    Article  CAS  Google Scholar 

  44. M. Wu, Y.D. Zhang, S. Hui et al., Microwave magnetic properties of Co50/(SiO2)50 nanoparticles. Appl Phys Lett. 80(23), 4404–4406 (2002). https://doi.org/10.1063/1.1484248

    Article  CAS  Google Scholar 

  45. L. Wang, X. Li, Q. Li, Y. Zhao, R. Che, Enhanced Polarization from Hollow Cube-like ZnSnO3 Wrapped by Multiwalled Carbon Nanotubes: As a Lightweight and High-Performance Microwave Absorber. ACS Appl Mater. Interf. 10(26), 22602–22610 (2018). https://doi.org/10.1021/acsami.8b05414

    Article  CAS  Google Scholar 

  46. L. Wang, H. Xing, S. Gao, X. Ji, Z. Shen, Porous flower-like NiO@graphene composites with superior microwave absorption properties. J Mater Chem C. 5(8), 2005–2014 (2017). https://doi.org/10.1039/C6TC05179K

    Article  CAS  Google Scholar 

  47. X. Li, L. Wang, W. You et al., Morphology-controlled synthesis and excellent microwave absorption performance of ZnCo2O4 nanostructures via a self-assembly process of flake units. Nanoscale 11(6), 2694–2702 (2019). https://doi.org/10.1039/C8NR08601J

    Article  CAS  Google Scholar 

  48. F. Zhang, W. Cui, B. Wang et al., Morphology-control synthesis of polyaniline decorative porous carbon with remarkable electromagnetic wave absorption capabilities. Compos. Part B Eng. 204, 108491 (2021). https://doi.org/10.1016/j.compositesb.2020.108491

    Article  CAS  Google Scholar 

  49. L. Cui, C. Tian, L. Tang et al., Space-confined synthesis of core-shell BaTiO3@carbon microspheres as a high-performance binary dielectric system for microwave absorption. ACS Appl. Mater. Interfaces. 11(34), 31182–31190 (2019). https://doi.org/10.1021/acsami.9b09779

    Article  CAS  Google Scholar 

  50. Z. Ma, C.T. Cao, Q.F. Liu, J.B. Wang, A new method to calculate the degree of electromagnetic impedance matching in one-layer microwave absorbers. Chin. Phys. Lett. 29(3), 038401 (2012). https://doi.org/10.1088/0256-307X/29/3/038401

    Article  CAS  Google Scholar 

  51. D. Liu, Y. Du, P. Xu et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption. J. Mater. Chem. C. 7(17), 5037–5046 (2019). https://doi.org/10.1039/C9TC00771G

    Article  CAS  Google Scholar 

  52. Z. Ma, Y. Zhang, C. Cao, J. Yuan, Q. Liu, J. Wang, Attractive microwave absorption and the impedance match effect in zinc oxide and carbonyl iron composite. Phys. B Condens. Matter. 406(24), 4620–4624 (2011). https://doi.org/10.1016/j.physb.2011.09.039

    Article  CAS  Google Scholar 

  53. J. He, S. Gao, Y. Zhang, X. Zhang, H. Li, N-doped residual carbon from coal gasification fine slag decorated with Fe3O4 nanoparticles for electromagnetic wave absorption. J. Mater. Sci. Technol. 104, 98–108 (2022). https://doi.org/10.1016/j.jmst.2021.06.052

    Article  CAS  Google Scholar 

  54. M. Ren, F. Li, B. Wang, J. Wei, Q. Yu, Preparation and electromagnetic wave absorption properties of carbon nanotubes loaded Fe3O4 composites. J. Magn. Magn. Mater. 513, 167259 (2020). https://doi.org/10.1016/j.jmmm.2020.167259

    Article  CAS  Google Scholar 

  55. X. Chen, T. Shi, G. Wu, Y. Lu, Design of molybdenum disulfide@polypyrrole compsite decorated with Fe3O4 and superior electromagnetic wave absorption performance. J. Colloid. Interf. Sci. 572, 227–235 (2020). https://doi.org/10.1016/j.jcis.2020.03.089

    Article  CAS  Google Scholar 

  56. Y. Cai, Q. Sun, L. Sun, X. Long, T. Ji, W. Ye, Effect of preparation conditions on structure and electromagnetic wave absorption properties of sandwich-like Fe3O4-rGO nanocomposites. J. Magn. Magn. Mater. 503, 166656 (2020). https://doi.org/10.1016/j.jmmm.2020.166656

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

QL: Data search and integration, Software, Data Analysis, Writing & Revision; GYU: Conceptualization, Formal analysis; MY: Supervision, Conceptualization, Writing—review & editing, Funding acquisition; AH: Funding acquisition, Supervision; QL: Software; YS: Conceptualization; CC: Software.

Corresponding author

Correspondence to Mingquan Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the research reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

(DOCX 2451 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Yu, G., Ye, M. et al. Rational design of flower-like core–shell Fe3O4@SiO2@MoSe2 composites for high performance electromagnetic wave absorption. J Mater Sci: Mater Electron 34, 1723 (2023). https://doi.org/10.1007/s10854-023-11098-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11098-y

Navigation