Skip to main content
Log in

Insights on the electrochemical properties of lattice strain induced layered V2O3–Al2O3 nanocomposites derived from the carbonization process

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein we report an innovative and reliable synthesis route to form layered V2O3–Al2O3 nanocomposite, where two separate reactions can be made to occur in a chain that leads to nanocomposite formation. The Al2O3 is helps in tackling the stability of V2O3 and ion transfer issues that usually metal oxides encounter. The formation of layered structures and lattice strain-induced V2O3–Al2O3 nanocomposite plays a major role in enhancing electrochemical performances. Also, the cyclic stability shows an significant increase with 84% capacitive retention even after 2500 cycles. The prepared layered V2O3–Al2O3 nanocomposite showcases exceptional specific capacitance values even at high scan rates (304 Fg−1 at 100 mV), and fast charge capacity, providing it with an edge over other materials to find applications in high-power utilities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All required data can be found within the main manuscript file.

Code availability

Not applicable.

References

  1. M. Inagaki, H. Konno, O. Tanaike, J. Power Sources. 195, 7880 (2010). https://doi.org/10.1016/j.jpowsour.2010.06.036

    Article  CAS  Google Scholar 

  2. C.D. Lokhande, D.P. Dubal, O.-S. Joo, Curr. Appl. Phys. 11, 255 (2011). https://doi.org/10.1016/j.cap.2010.12.001

    Article  Google Scholar 

  3. P. Forouzandeh, V. Kumaravel, S.C. Pillai, Catalysts. 10, 969 (2020). https://doi.org/10.3390/catal10090969

    Article  CAS  Google Scholar 

  4. A. González, E. Goikolea, J.A. Barrena, R. Mysyk, Renew. Sustain. Energy Rev. 58, 1189 (2016). https://doi.org/10.1016/j.rser.2015.12.249

    Article  CAS  Google Scholar 

  5. R. Zhang, Q. Fu, P. Gao, W. Zhou, H. Liu, C. Xu, J.F. Wu, C. Tu, J. Liu, J. Energy Chem. 70, 95 (2022). https://doi.org/10.1016/j.jechem.2022.01.048

    Article  CAS  Google Scholar 

  6. Y. Liu, S.P. Jiang, Z. Shao, Mater. Today Adv. 7, 100072 (2020). https://doi.org/10.1016/j.mtadv.2020.100072

    Article  Google Scholar 

  7. S. Tharani, D. Durgalakshmi, S. Balakumar, R.A. Rakkesh, ACS Appl. Mater. Interfaces. 15, 25 (2023). https://doi.org/10.1021/acsami.3c05835

    Article  CAS  Google Scholar 

  8. Z.S. Iro, C. Subramani, S.S. Dash, Int. J. Electrochem. Sci. 11, 10628 (2016). https://doi.org/10.20964/2016.12.50

    Article  CAS  Google Scholar 

  9. T.B. Naveen, D. Durgalakshmi, A.K. Kunhiraman, S. Balakumar, R. Ajay Rakkesh, J. Mater. Res. 36, 4102–4119 (2021). https://doi.org/10.1557/s43578-021-00366-4

    Article  CAS  Google Scholar 

  10. Y. Dong, R. Ma, M. Hu, H. Cheng, J.M. Lee, Y.Y. Li, J.A. Zapien, J. Power Sources. 261, 184 (2014). https://doi.org/10.1016/j.jpowsour.2014.03.020

    Article  CAS  Google Scholar 

  11. D. Majumdar, M. Mandal, S.K. Bhattacharya, ChemElectroChem. 6, 1623 (2019). https://doi.org/10.1002/celc.201801761

    Article  CAS  Google Scholar 

  12. R.N. Reddy, R.G. Reddy, J. Power Sources. 156, 700 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.071

    Article  CAS  Google Scholar 

  13. Z.J. Lao, K. Konstantinov, Y. Tournaire, S.H. Ng, G.X. Wang, H.K. Liu, J. Power Sources. 162, 1451 (2006). https://doi.org/10.1016/j.jpowsour.2006.07.060

    Article  CAS  Google Scholar 

  14. Q. Zhang, X. Wang, Z. Pan, J. Sun, J. Zhao, J. Zhang, L. Tang, J. Luo, B. song, Z. Zhang, W. Lu, Q. Li, Y. Zhang, Nano Lett. 17, 2719 (2017). https://doi.org/10.1021/acs.nanolett.7b00854

    Article  CAS  Google Scholar 

  15. M. Yu, Y. Zeng, Y. Han, X. Cheng, W. Zhao, C. Liang, Y. Tong, H. Tang, X. Lu, Adv. Funct. Mater. 25, 3534 (2015). https://doi.org/10.1002/adfm.201501342

    Article  CAS  Google Scholar 

  16. L. Yuan, X. Lu, X. Xiao, T. Zhai, J. Dai, F. Zhang, B. Hu, X. Wang, L. Gong, J. Chen, C. Hu, Y. Tong, J. Zhou, Z.L. Wang, ACS Nano. 6, 656 (2012). https://doi.org/10.1021/nn2041279

    Article  CAS  Google Scholar 

  17. Z.Q. Hou, Z.Y. Wang, Z.G. Yang, RSC Adv. 7, 25732 (2017). https://doi.org/10.1039/C7RA02899G

    Article  CAS  Google Scholar 

  18. J. Zheng, Y. Zhang, C. Meng, X. Wang, C. Liu, M. Bo, X. Pei, Y. Wei, T. Lv, G. Cao, Electrochim. Acta. 318, 635 (2019). https://doi.org/10.1016/j.electacta.2019.06.125

    Article  CAS  Google Scholar 

  19. T. Hu, Y. Liu, Y. Zhang, Y. Nie, J. Zheng, Q. Wang, H. Jiang, C. Meng, Microporous Mesoporous Mater. 262, 199 (2018). https://doi.org/10.1016/j.micromeso.2017.11.044

    Article  CAS  Google Scholar 

  20. J. Zheng, Y. Zhang, X. Jing, X. Liu, T. Hu, T. Lv, S. Zhang, C. Meng, Colloids Surf. A: Physicochem Eng. Asp. 518, 188 (2017). https://doi.org/10.1016/j.colsurfa.2017.01.035

    Article  CAS  Google Scholar 

  21. Y. Wang, L. Xu, Z. Wang, Z. Pu, Y. Yuan, X. Li, X. Liu, A. Fu, Y. Li, H. Li, J. Colloid Interface Sci. 622, 748 (2022). https://doi.org/10.1016/j.jcis.2022.04.143

    Article  CAS  Google Scholar 

  22. S. Di, L. Gong, B. Zhou, Mater. Chem. Phys. 253, 123289 (2020). https://doi.org/10.1016/j.matchemphys.2020.123289

    Article  CAS  Google Scholar 

  23. S. Mishra, P.K. Maurya, A.K. Mishra, Mater. Chem. Phys. 255, 123551 (2020). https://doi.org/10.1016/j.matchemphys.2020.123551

    Article  CAS  Google Scholar 

  24. A. Rose, K.G. Prasad, T. Sakthivel, V. Gunasekaran, T. Maiyalagan, T. Vijayakumar, Appl. Surf. Sci. 449, 551 (2018). https://doi.org/10.1016/j.apsusc.2018.02.224

    Article  CAS  Google Scholar 

  25. Y. Yang, N. Wang, X. Pang, A. Yasinskiy, Y. Tan, J. Yu, Z. Wang, Z. Shi, J. Mater. Res. Technol. 15, 6640 (2021). https://doi.org/10.1016/j.jmrt.2021.11.099

    Article  CAS  Google Scholar 

  26. D.S. Su, R. Schlögl, Catal. Lett. 83, 115 (2002). https://doi.org/10.1023/A:1021042232178

    Article  CAS  Google Scholar 

  27. B. Yahmadi, N. Kamoun, C. Guasch, R. Bennaceur, Mater. Chem. Phys. 127, 239 (2011). https://doi.org/10.1016/j.matchemphys.2011.01.066

    Article  CAS  Google Scholar 

  28. Y. Zhang, M. Fan, X. Liu, C. Huang, H. Li, Eur. J. Inorg. Chem. (2012). https://doi.org/10.1002/ejic.201101266

    Article  Google Scholar 

  29. I.L. Botto, M.B. Vassallo, E.J. Baran, G. Minelli, Mater. Chem. Phys. 50, 267 (1997). https://doi.org/10.1016/S0254-0584(97)01940-8

    Article  CAS  Google Scholar 

  30. E. Ponticorvo, S. Galvagno, S. Portofino, C. Borriello, L. Tammaro, P. Iovane, G. Rametta, M. Sarno, Chem. Eng. Trans. 84, 187 (2021). https://doi.org/10.3303/CET2184032

    Article  Google Scholar 

  31. S. Petnilota, R. Chua, K.M. Boopathi, R. Sathish, F. Bonaccorso, V. Pellegrini, M. Srinivasan, J. Electrochem. Soc. 167, 100514 (2020). https://doi.org/10.1149/1945-7111/ab971e

    Article  CAS  Google Scholar 

  32. T. Dash, T.K. Rout, B.B. Palei, SN Appl. Sci. 2, 1147 (2020). https://doi.org/10.1007/s42452-020-2672-9

    Article  CAS  Google Scholar 

  33. R.S. Raveendraa, K.R. Hari, S. Anandad, N.P. Bhagya, K. Lingarajue, H. Naikae, Ananthaswamy. J. Asian Ceram. Soc. (2015). https://doi.org/10.1016/j.jascer.2015.07.001

    Article  Google Scholar 

  34. X. Pan, G. Ren, M.N.F. Hoque, S. Bayne, K. Zhu, Z. Fan, Adv. Mater. Interfaces. 1, 1400398 (2014). https://doi.org/10.1002/admi.201400398

    Article  CAS  Google Scholar 

  35. Y. Zhang, ChemistrySelect. (2018). https://doi.org/10.1002/slct.201702705

    Article  Google Scholar 

  36. X. Pan, Y. Zhao, G. Ren, Z. Fan, Chem. Commun. 49, 3943 (2013). https://doi.org/10.1039/C3CC00044C

    Article  CAS  Google Scholar 

  37. H. Li, K. Jiao, L. Wang, C. Wei, X. Li, B. Xie, J. Mater. Chem. A 2, 18806 (2014). https://doi.org/10.1039/C4TA04062G

    Article  CAS  Google Scholar 

  38. X. Zhang, Z. Bu, R. Xu, B. Xie, H.-Y. Li, Func. Mater. Lett. (2017). https://doi.org/10.1142/S1793604717500771

    Article  Google Scholar 

  39. C. Zhao, J. Cao, Y. Yang, W. Chen, J. Li, J. Colloid Interf Sci. 427, 73 (2014). https://doi.org/10.1016/j.jcis.2013.11.086

    Article  CAS  Google Scholar 

  40. J. Som, J. Choi, H. Zhang, N.R. Mucha, S. Fialkova, K. Mensah-Darkwa, J. Suntivich, R.K. Gupta, D. Kumar, Mater. Sci. Eng. 280, 115711 (2022). https://doi.org/10.1016/j.mseb.2022.115711

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the SRM Institute of Science and Technology for providing SRM fellowship to carry out this research work. We also acknowledge the SRM Central Instrumentation Facility (SCIF) support from MNRE (Project No. 31/03/2014-15/PVSE-R&D), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

TBN: Conceptualization, Investigation, Methodology, Writing—Original draft, DD: Conceptualization, Investigation, Methodology, JM and KKA: Conceptualization, Validation, SB: Conceptualization, Validation, Review and RAR: Investigation, Supervision, Review and editing, Conceptualization.

Corresponding author

Correspondence to R. Ajay Rakkesh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naveen, T.B., Durgalakshmi, D., Mohanraj, J. et al. Insights on the electrochemical properties of lattice strain induced layered V2O3–Al2O3 nanocomposites derived from the carbonization process. J Mater Sci: Mater Electron 34, 1636 (2023). https://doi.org/10.1007/s10854-023-11082-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11082-6

Navigation