Skip to main content

Advertisement

Log in

Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5 mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g−1 at 0.5 A g−1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657

    Article  CAS  Google Scholar 

  2. Zhai Y, Dou Y, Zhao D, Fulvio PF, Mayes RT, Dai S (2011) Carbon materials for chemical capacitive energy storage. Adv Mater 23:4828–4850

    Article  CAS  Google Scholar 

  3. Liu C, Li F, Ma LP, Cheng HM (2010) Advanced materials for energy storage. Adv Mater 22:E28–E62

    Article  CAS  Google Scholar 

  4. Xiong P, Zhu J, Wang X (2015) Recent advances on multi-component hybrid nanostructures for electrochemical capacitors. J Power Sources 294:31–50

    Article  CAS  Google Scholar 

  5. Sedlakova V, Sikula J, Majzner J, Sedlak P, Kuparowitz T, Buergler B, Vasina P (2015) Supercapacitor equivalent electrical circuit model based on charges redistribution by diffusion. J Power Sources 286:58–65

    Article  CAS  Google Scholar 

  6. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  CAS  Google Scholar 

  7. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    Article  CAS  Google Scholar 

  8. Hao S, Zhang B, Ball S, Copley M, Xu Z, Srinivasan M, Zhou K, Mhaisalkar S, Huang Y (2015) Synthesis of multimodal porous ZnCo2O4 and its electrochemical properties as an anode material for lithium ion batteries. J Power Sources 294:112–119

    Article  CAS  Google Scholar 

  9. Wang N, Ma X, Xu H, Chen L, Yue J, Niu F, Yang J, Qian Y (2014) Porous ZnMn2O4 microspheres as a promising anode material for advanced lithium-ion batteries. Nano Energy 6:193–199

    Article  CAS  Google Scholar 

  10. Huang M, Zhang Y, Li F, Zhang L, Wen Z, Liu Q (2014) Facile synthesis of hierarchical Co3O4@MnO2 core-shell arrays on Ni foam for asymmetric supercapacitors. J Power Sources 252:98–109

    Article  CAS  Google Scholar 

  11. Shen L, Yu L, Yu X-Y, Zhang X, Lou XW (2015) Self-templated formation of uniform NiCo2O4 hollow spheres with complex interior structures for lithium-ion batteries and supercapacitors. Angew Chem Int Ed 54:1868–1872

    Article  CAS  Google Scholar 

  12. Kim W-S, Hwa Y, Kim H-C, Choi J-H, Sohn H-J, Hong S-H (2014) SnO2@Co3O4 hollow nano-spheres for a Li-ion battery anode with extraordinary performance. Nano Res 7:1128–1136

    Article  CAS  Google Scholar 

  13. Xiong QQ, Xia XH, Tu JP, Chen J, Zhang YQ, Zhou D, Gu CD, Wang XL (2013) Hierarchical Fe2O3@Co3O4 nanowire array anode for high-performance lithium-ion batteries. J Power Sources 240:344–350

    Article  CAS  Google Scholar 

  14. Yang X, Jun L, Jia H (2014) Study on structure and electrochemical performance of Tm3+-doped monoclinic Li3V2(PO4)3/C cathode material for lithium-ion batteries. Electrochim Acta 150:62–67

    Article  CAS  Google Scholar 

  15. Shen C, Zhang B, Zheng J-C, Han Y-D, Zhang J-F (2015) Effect of sintering time on the synthesize of the multi-layered core-shell LiVOPO4-Li3V2(PO4)3 composite for Li-ion batteries. J Alloys Compd 622:771–782

    Article  CAS  Google Scholar 

  16. Al-Assiri MS, El-Desoky MM, Alyamani A, Al-Hajry A, Al-Mogeeth A, Bahgat AA (2010) Structural and transport properties of Li-intercalated vanadium pentoxide nanocrystalline films. Philos Mag 25:3421–3439

    Article  Google Scholar 

  17. Chowdhuri BVR, Mok KF, Xie JM, Gopalakrisnan R (1995) Electrical and structural studies of lithium fluorophosphate glasses. Solid State Ionics 76:189–198

    Article  Google Scholar 

  18. Winter R, Siegmund K, Heitijans P (1997) Nuclear magnetic and conductivity relaxations by Li diffusion in glassy and crystalline LiAlSi4O10. J Non-Cryst Solids 212:215–224

    Article  CAS  Google Scholar 

  19. Zhang L, Wang XL, Xiang JY, Zhou Y, Shi SJ, Tu JP (2010) Synthesis and electrochemical performances of Li3V2(PO4)3/(Ag + C) composite cathode. J Power Sources 195:5057–5061

    Article  CAS  Google Scholar 

  20. Ren MM, Zhou Z, Gao XP, Peng WX, Wei JP (2008) Core-shell Li3V2(PO4)3@C composites as cathode materials for lithium-ion batteries. J Phys Chem C 112:5689–5693

    Article  CAS  Google Scholar 

  21. Choi D, Kumta PN (2007) Surfactant based sol-gel approach to nanostructured LiFePO4 for high rate Li-ion batteries. J Power Sources 163:1064–1069

    Article  CAS  Google Scholar 

  22. Zhang Y, Huo QY, Du PP, Wang LZ, Zhang AQ, Song YH, Lv Y, Li GY (2012) Advances in new cathode material LiFePO4 for lithium-ion batteries. Synth Met 162:1315–1326

    Article  CAS  Google Scholar 

  23. Messing GL, Zhang SC, Jayanthi GV, Am J (1993) Ceramic powder synthesis by spray pyrolysis. Ceram Soc 76:2707–2726

    Article  CAS  Google Scholar 

  24. Gao MR, Xu YF, Jiang J, Yu SH (2013) Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem Soc Rev 42:2986–3017

    Article  CAS  Google Scholar 

  25. Al-Syadi AM, Al-Assiri MS, Hassan HMA, El-Desoky MM (2016) Grain size effects on the transport properties of Li3V2(PO4)3 glass-ceramic nanocomposites for lithium cathode batteries. J Mater Sci Mater Electron 27:4074–4083

    Article  CAS  Google Scholar 

  26. Cui L, Wang GG, Zhang HY, Suna R, Kuang XP, Han JC (2013) Effect of film thickness and annealing temperature on the structural and optical properties of ZnO thin films deposited on sapphire (0001) substrates by sol-gel. Ceram Int 39:3261–3268

    Article  CAS  Google Scholar 

  27. Tong H, Zhu J, Chen J, Han Y, Yang S, Ding B, Zhang X (2013) Electrochemical reduction of graphene oxide and its electrochemical capacitive performance. J Solid State Electrochem 17:2857–2863

    Article  CAS  Google Scholar 

  28. Shabani-Shayeh J, Ehsani A, Ganjali MR, Norouzi P, Jaleh B (2015) Conductive polymer/reduced graphene oxide/Au nano particles as efficient composite materials in electrochemical supercapacitors. Appl Surf Sci 353:594–599

    Article  CAS  Google Scholar 

  29. Singhal A, Skandan G, Amatucci G (2004) Nanostructured electrodes for next generation rechargeable electrochemical devices. J Power Sources 129:38–44

    Article  CAS  Google Scholar 

  30. Hao Y-J, Wang L, Lai Q-Y (2011) Preparation and electrochemical performance of nano-structured Li2Mn4O9 for supercapacitor. J Solid State Electrochem 15:1901–1907

    Article  CAS  Google Scholar 

  31. Lee K, Kim D, Yoon Y, Yang J, Yun H-G, You I-K, Lee H (2015) Fast diffusion supercapacitors via an ultra-high pore volume of crumpled 3D structure reduced graphene oxide activation. RSC Adv 5:60914–60919

    Article  CAS  Google Scholar 

  32. Mai L, Li H, Zhao Y, Xu L, Xu X, Luo Y, Zhang Z, Ke W, Niu C, Zhang Q (2013) Fast ionic diffusion-enabled nanoflake electrode by spontaneous electrochemical pre-intercalation for high-performance supercapacitor. Sci Rep 3(1–8):1718

    Google Scholar 

  33. Cha CS (2002) Introduction to kinetics of electrode process, 3rd edn. Science Press, Beijing

    Google Scholar 

  34. Cao X, Zhang J (2014) Rheological phase synthesis and characterization of Li3V2(PO4)3/C composites as cathode materials for lithium ion batteries. Electrochim Acta 129:305–311

    Article  CAS  Google Scholar 

  35. Mendiboure A, Delmas C, Hagenmuller P (1985) Electrochemical intercalation and deintercalation of Na x MnO2 bronzes. J Solid State Chem 57:323–331

    Article  CAS  Google Scholar 

  36. Li Z-Y, Bui PTM, Kwak D-H, Akhtar MS, Yang Q-B (2016) Enhanced electrochemical activity of low temperature solution process synthesized Co3O4 nanoparticles for pseudo-supercapacitors applications. Ceram Int 42:1879–1885

    Article  CAS  Google Scholar 

  37. Wang L, Liu XH, Wang L, Yang XJ, Lu LD (2011) Electrochemical capacitance study on Co3O4 nanowires for super capacitors application. J Mater Sci Mater Electron 22:601–606

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support of the Ministry of Higher Education, Kingdom of Saudi Arabia for supporting this research through a grant (PSCED- 003–15) under the Promising Centre for Sensors and Electronic Devices (PCSED) at Najran University, Kingdom of Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. El-Desoky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Desoky, M.M., Al-Syadi, A.M., Al-Assiri, M.S. et al. Electrochemical performance of novel Li3V2(PO4)3 glass-ceramic nanocomposites as electrodes for energy storage devices. J Solid State Electrochem 20, 2663–2671 (2016). https://doi.org/10.1007/s10008-016-3267-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-016-3267-7

Keywords

Navigation