Skip to main content

Advertisement

Log in

Architecture of γ-WO3 nanosheets-like electrode material for super capacitor application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The present work demonstrated simple, cost-effective, and efficient synthetic approach for producing two-dimensional (2D) nanosheets (NSs) of oxygen-deficient monoclinic γ-tungsten oxide (γ-WO3), which exhibit desirable properties used for super capacitor application. The hydrothermal method was employed at a temperature of 120 °C for 12 h to synthesize γ-WO3. Structural and optical properties of the γ-WO3 NSs were analyzed by using various techniques such as X-ray diffraction, Raman spectroscopy, diffused reflectance spectroscopy, and photoluminescence analysis. Morphological characterization was performed using field emission-scanning electron microscopy and high-resolution transmission electron microscopy. Furthermore, the electrochemical properties of the γ-WO3 NSs were evaluated for supercapacitor applications. The as-synthesized γ-WO3 NSs electrode exhibited a remarkable specific capacitance of 386 F g−1 at a low current density of 5 mA cm−2. Also, the γ-WO3 NSs electrode displayed excellent stability, emphasizing its potential for energy storage device applications (ESDA).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not Applicable.

References

  1. S. Chen, J. Duan, Y. Tang, B. Jin, S.Z. Qiao, Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst. Nano Energy 11, 11–18 (2015)

    Article  Google Scholar 

  2. X. Wang, G. Li, F.M. Hassan, M. Li, K. Feng, X. Xiao, Z. Chen, Building sponge-like robust architectures of CNT–graphene–Si composites with enhanced rate and cycling performance for lithium-ion batteries. J. Mater. Chem. A 3, 3962–3967 (2015)

    Article  CAS  Google Scholar 

  3. J. Low, S. Cao, J. Yu, S. Wageh, Two-dimensional layered composite photocatalysts. Chem. Commun. 50, 10768–10777 (2014)

    Article  CAS  Google Scholar 

  4. P. Velusamy, R. Ramesh Babu, K.T., Aparna, effect of Sm doping on the physical properties of ZnO thin films deposited by spray pyrolysis technique. AIP Conference Proceedings 1832, 080085 (2017). https://doi.org/10.1063/1.4980545

    Article  CAS  Google Scholar 

  5. R.S. Diggikar, M.V. Kulkarni, G.M. Kale, B.B. Kale, Formation of multifunctional nanocomposites with ultrathin layers of polyaniline (PANI) on silver vanadium oxide (SVO) nanospheres by in situ polymerization. J. Mater. Chem. A 1, 3992–4001 (2013)

    Article  CAS  Google Scholar 

  6. S.P. Deshmukh, K.R. Sanadi, R.S. Diggikar, V.B. Koli, A.V. Mali, Structural, magnetic, and electrical properties of manganese-substituted magnesium chromate spinel structure. J. Mater. Sci.: Mater. Electron. 32, 6810–6819 (2021)

    CAS  Google Scholar 

  7. P. Velusamy, R.R. Babu, K. Ramamurthi, Structural, microstructural, optical and electrical properties of spray deposited rare-earth metal (Sm) ions doped CdO thin films. J. Mater. Sci.: Mater. Electron. 26, 4152–4164 (2015)

    CAS  Google Scholar 

  8. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, M.S. Dahlem, E. Elangovan, High transparent conducting cerium incorporated CdO thin films deposited by spray pyrolytic technique. RSC Adv. 0, 1–3 (2013)

    CAS  Google Scholar 

  9. R.S. Diggikar, J.D. Ambekar, M.V. Kulkarni, B.B. Kale, Nanocrystalline silver vanadium sulfide (SVS) anchored polyaniline (PANI): new nanocomposite system for supercapacitor, 2013. New J. Chem. 37(10), 3236–3243 (2013)

    Article  CAS  Google Scholar 

  10. P. Velusamy, R. Ramesh Babu, K. Ramamurthi, E. Elangovan, J. Viegas, Effect of La doping on the structural, optical and electrical properties of spray pyrolytically deposited CdO thin films. J. Alloys Compd. 708, 804–812 (2017)

    Article  CAS  Google Scholar 

  11. R.S. Diggikar, V.M. Dhavale, D.B. Shinde, N.S. Kanbargi, M.V. Kulkarni, B.B. Kale, Morphology controlled synthesis of LiV 2 0 5/Ag nanocomposite nanotubes with enhanced electrochemical performance. RSC Adv. 2, 3231–3233 (2012)

    Article  CAS  Google Scholar 

  12. P. Velusamy, X. Liu, M. Sathiya, N.S. Alsaiari, F.M. Alzahrani, M. Tariq Nazir, M. Elangovan Elamurugu, Senthil Pandian, Fuchun Zhang, Investigate the suitability of g-C3N4 nanosheets ornamented with BiOI nanoflowers for photocatalytic dye degradation and PEC water splitting. Chemosphere 321, 138007 (2023)

    Article  CAS  Google Scholar 

  13. G. Mineo, E. Bruno, S. Mirabella, Advances in WO3-Based Supercapacitors: State-of-the-Art Research and Future Perspectives. Nanomaterials 13, 1418 (2003)

    Article  Google Scholar 

  14. A.V. Salkar, S.V. Bhosale, P.P. Morajkar, Nanostructured WO3−x based advanced supercapacitors for sustainable energy applications, in Advances in Metal Oxides and Their Composites for Emerging Applications. (Elsevier, Amsterdam, 2022), pp.213–238

    Chapter  Google Scholar 

  15. F. Zhan, Y. Liu, K. Wang, X. Yang, M. Liu, X. Qiu, J. Li, W. Li, Oxygen-deficient nanofiber WO3–x/WO3 homojunction photoanodes synthesized via a novel metal self-reducing method. ACS Appl. Mater. Interfaces 11, 39951–39960 (2019)

    Article  CAS  Google Scholar 

  16. D. Mandal, P. Routh, A.K. Nandi, A New facile synthesis of tungsten oxide from tungsten disulfide: structure dependent supercapacitor and negative differential resistance properties. Small 1, 1702881 (2017)

    Google Scholar 

  17. Z. Yin, Y. Bu, J. Ren, S. Chen, D. Zhao, Y. Zou, S. Shen, D. Yang, Triggering superior sodium ion adsorption on (2 0 0) facet of mesoporous WO3 nanosheet arrays for enhanced supercapacitance. Chem. Eng. J. 345, 165–173 (2018)

    Article  CAS  Google Scholar 

  18. G. Yang, X. Xia Liu, Electrochemical fabrication of interconnected tungsten bronze nanosheets for high performance supercapacitor. J. Power Sources 383, 17–23 (2018)

    Article  CAS  Google Scholar 

  19. V.C. Lokhande, T. Hussain, A.R. Shelke, A.C. Lokhande, Taeksoo Ji, Substitutional doping of WO3 for Ca-ion based supercapacitor. Chem. Eng. J. 424, 130557 (2021)

    Article  CAS  Google Scholar 

  20. P. Velusamy, S. Liu, R. Xing, M. Sathiya, A. Ahmad, M.D. Albaqami, R.G. Alotabi, E. Elamurugu, M.S. Pandian, P. Ramasamy, Enhanced photo-electrocatalytic performance of the nano heterostructures based on Pr3+ modified g-C3N4 and BiOI. Int. J. Hydrogen Energy 47, 32903–32920 (2022)

    Article  CAS  Google Scholar 

  21. M. Aravind, M. Amalanathan, S. Aslam, A.E. Noor, D. Jini, S. Majeed, P. Velusamy, A.A. Alothman, R.A. Alshgari, M.S. Mushab, M. Sillanpaa, Hydrothermally synthesized Ag-TiO2 nanofibers (NFs) for photocatalytic dye degradation and antibacterial activity. Chemosphere 321, 138077 (2023)

    Article  CAS  Google Scholar 

  22. S.P. Gupta, M.A. More, D.J. Late, P.S. Walke, High-rate quasi-solid-state hybrid supercapacitor of hierarchical flowers of hydrated tungsten oxide NSs. Electrochim. Acta 366, 137389 (2021)

    Article  CAS  Google Scholar 

  23. M.S. Tamboli, D.P. Dubal, S.S. Patil, A.F. Shaikh, V.G. Deonikar, M.V. Kulkarni, N.N. Maldar, A.M. Asiri, P. Gomez-Romero, B.B. Kale, D.R. Patil, Mimics of microstructures of Ni substituted Mn1− xNixCo2O4 for high energy density asymmetric capacitors. Chem. Eng. J. 307, 300–310 (2017)

    Article  CAS  Google Scholar 

  24. C. Huang, Q. Zhu, W. Zhang, P. Qi, Q. Xiao, Y. Ying, Facile preparation of W5O14 nanosheet arrays with large crystal channels as high-performance negative electrode for supercapacitor Author links open overlay panel. Electrochim. Acta 330, 135209 (2020)

    Article  CAS  Google Scholar 

  25. B. Moshofsky, T. Mokari, Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism. Chem. Mater. 25(8), 1384–1391 (2013)

    Article  CAS  Google Scholar 

  26. P.J. Boruah, R.R. Khanikar, H. Bailung, Synthesis and characterization of oxygen vacancy induced narrow bandgap tungsten oxide (WO3− x) nanoparticles by plasma discharge in liquid and its photocatalytic activity. Plasma Chem. Plasma Process 40, 1019–1036 (2020)

    Article  CAS  Google Scholar 

  27. P. Ivanoff Reyes, C.J. Ku, Z. Duan, Y. Xu, E. Garfunkel, Y. Lu, Reduction of persistent photoconductivity in ZnO thin film transistor-based UV photodetector. Appl. Phys. Lett. 101(3), 031118 (2012)

    Article  Google Scholar 

  28. B. Moshofsky, T. Mokari, Length and diameter control of ultrathin nanowires of substoichiometric tungsten oxide with insights into the growth mechanism. Chem. Mater. 25, 1384–1391 (2013)

    Article  CAS  Google Scholar 

  29. S.K. Shinde, D.P. Dubal, G.S., Ghodake, D.Y. Kim, V.J. Fulari, Nanoflower-like CuO/Cu(OH)2 hybrid thin films: Synthesis and electrochemical supercapacitive properties. J. Electroanal. Chem. 732, 80–85 (2014)

    Article  CAS  Google Scholar 

  30. S.K. Shinde, M.B. Jalaka, G.S. Ghodake, N.C. Maile, V.S. Kumbhar, D.S. Lee, V.J. Fulari, D.-Y. Kim, Chemically synthesized nanoflakes-like NiCo2S4 electrodes for high-performance supercapacitor application. Appl. Surf. Sci. 466, 822–829 (2019)

    Article  CAS  Google Scholar 

  31. K. Sun, F. Hua, S. Cui, Y. Zhu, H. Peng, G. Ma, An asymmetric supercapacitor based on controllable WO 3 nanorod bundle and alfalfa-derived porous carbon. RSC Adv. 11, 37631–37642 (2021)

    Article  CAS  Google Scholar 

  32. G. Mineo, E. Bruno, S. Mirabella, Advances in WO3-Based Supercapacitors: State-of-the-Art Research and Future Perspectives. Nanomaterials 13, 1418 (2023)

    Article  CAS  Google Scholar 

  33. S.K. Shinde, D.P. Dubal, G.S. Ghodake, V.J. Fulari, Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors. RSC adv. 5, 4443–4447 (2015)

    Article  CAS  Google Scholar 

  34. Z. Khan, B. Senthilkumar, S. Lim, R. Shanker, Y. Kim, H. Ko, Redox-additive-enhanced high capacitance supercapacitors based on Co2P2O7 Nanosheets. Adv. Mater. Interfaces 4, 1700059 (2017)

    Article  Google Scholar 

  35. H. Pang, Z. Yan, Y. Ma, G. Li, J. Chen, J. Zhang, W. Du, S. Li, Cobalt pyrophosphate nano/microstructures as promising electrode materials of supercapacitor. J. Solid State Electrochem. 17, 1383–1391 (2013)

    Article  CAS  Google Scholar 

  36. R.D. Kumar, Y.A.S. Karuppuchamy, Facile Synthesis of Co—WO3/ functionalized carbon nanotube nanocomposites for supercapacitor applications. J. Mater. Sci. Mater. Electron. 28, 5425–5434 (2017)

    Article  Google Scholar 

  37. J. Jia, X. Liu, R. Mi, N. Liu, Z. Xiong, L. Yuan, C. Wang, G. Sheng, L. Cao, X. Zhou et al., Self-Assembled Pancake-like Hexagonal Tungsten Oxide with Ordered Mesopores for Supercapacitors. J. Mater. Chem. A 6, 15330–15339 (2018)

    Article  CAS  Google Scholar 

Download references

Funding

The authors extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R370), King Saud University, Riyadh, Saudi Arabia for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, writing-original draft, and methodology, RSD; formal analysis, MST, and SKS; resources. SPD; HK; writing—review and editing, SFS and NTNT funding acquisition, SFS, All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Rahul S. Diggikar or Nguyen Tam Nguyen Truong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and animal participants

This article does not contain any studies with human participants or animals performed by any of the authors. In this experiment, we did not collect any samples of human and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diggikar, R.S., Tamboli, M.S., Shinde, S.K. et al. Architecture of γ-WO3 nanosheets-like electrode material for super capacitor application. J Mater Sci: Mater Electron 34, 1735 (2023). https://doi.org/10.1007/s10854-023-11081-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11081-7

Navigation