Skip to main content
Log in

Crystal growth, structural, optical, thermal, second-order nonlinear optical and quantum chemical analyses of glutaric acid 2-imidazolidinone crystal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An organic imidazolidin-2-one-glutaric acid (IGA) co-crystal was grown by the slow evaporation solution growth technique. The monoclinic crystal structure of IGA crystal was confirmed by single crystal X-ray diffraction analysis. The crystal structure parameters were calculated using DFT calculations. The H–H contacts (39.9%) have the highest interaction on the Hirshfeld surface. The presence of chemical elements was analyzed by elemental analysis. The functional groups of IGA were analyzed by FT-RAMAN and FT-IR spectra. The UV–Vis-NIR absorption spectrum indicates that the grown crystal has no absorption in the Vis–NIR region. The HOMO is localized on the 2-imidazolidinone ring. Total, partial, and overlap population densities of states can be used to analyze the molecular orbital compositions and their contributions to chemical bonding. In the IGA molecule, H29 and C10 have the highest positive charge and lowest negative charge, respectively. The MEP study shows the electrophilic and nucleophilic ranges of the IGA molecule. The IGA molecule stabilizing energy was calculated using NBO analysis. The hyperpolarizability value of the grown crystal is 7.03 × 10−31 esu. The TG/DTG curve shows that the IGA crystal decomposes in two different stages. The photoluminescence emission band was observed from 350 to 580 nm. The IGA crystal has SHG behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Data availability

The authors declare that the data available within the paper [10]. Co-crystallisation of organic a, u-dicarboxylic acids with the cyclic amides 2-pyrrolidinone and 2 imidazolidinone. Callear SK, Hursthouse MB, Threlfall TL. (https://doi.org/10.1039/B901453E).

References

  1. M. Shkir, V. Ganesh, I.S. Yahia, H.S.M. Abd-Rabboh, S. AlFaify, Effects of methyl violet dye on the growth and properties of zinc (tris) thiourea sulfate single crystals. J. Phys. Chem. Solids. 123, 336–343 (2018). https://doi.org/10.1016/j.jpcs.2018.08.021

    Article  CAS  Google Scholar 

  2. N. Zaitseva, L. Carman, Rapid growth of KDP-type crystals. Prog. Cryst. Growth Charact. Mater. 43(1), 1–118 (2001). https://doi.org/10.1016/S0960-8974(01)00004-3

    Article  CAS  Google Scholar 

  3. V. Sivasubramani, M. Anis, S.S. Hussaini, G.G. Muley, M. Senthil Pandian, P. Ramasamy, Bulk growth of organic non-linear optical (NLO) L-arginine 4-nitrophenolate 4-nitrophenol dihydrate (LAPP) single crystals by Sankaranarayanan–Ramasamy (SR) method. Mater. Res. Innov. 21(7), 426–433 (2017). https://doi.org/10.1080/14328917.2016.1265259

    Article  CAS  Google Scholar 

  4. D. Xu, D. Xue, Chemical bond simulation of KADP single-crystal growth. J. Cryst. Growth. 310, 7–9 (2008). https://doi.org/10.1016/j.jcrysgro.2007.12.008

    Article  CAS  Google Scholar 

  5. D. Xue, S. Zhang, Effect of hydrogen bonds on optical nonlinearities of inorganic crystals. Chem. Phys. Lett. 301, 5–6 (1999). https://doi.org/10.1016/S0009-2614(99)00055-X

    Article  Google Scholar 

  6. X. Ren, D. Xu, D. Xue, Crystal growth of KDP, ADP, and KADP. J. Cryst. Growth. 310, 7–9 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.008

    Article  CAS  Google Scholar 

  7. D. Xue, H. Ratajczak, Constituent chemical bonds and nonlinear optical coefficient of Na2SeO4 · H2SeO3 · H2O molecular crystal. Chem. Phys. Lett. 371, 5–6 (2003). https://doi.org/10.1016/S0009-2614(03)00317-8

    Article  CAS  Google Scholar 

  8. S. Kannan, A. Sekar, K. Sivaperuman, Effects of the molecular structure on the second-order nonlinear optical properties of stilbazolium derivative single crystals: a review. J. Mater. Chem. C 8(47), 16668–16690 (2020). https://doi.org/10.1039/d0tc04260a

    Article  CAS  Google Scholar 

  9. T. Kamalesh, P. Karuppasamy, C. Senthilkumar, M. Senthil Pandian, P. Ramasamy, S. Verma, Growth, structural, hirshfeld surface, optical, laser damage threshold, dielectric and chemical etching analysis of 4-dimethylaminopyridinium 4-nitrophenolate 4-nitrophenol (DMAPNP) single crystal. J. Mater. Sci. Mater. Electron. 31(1), 373–386 (2020). https://doi.org/10.1007/s10854-019-02536-x

    Article  CAS  Google Scholar 

  10. S.K. Callear, M.B. Hursthouse, T.L. Threlfall, Co-crystallisation of organic a, u -dicarboxylic acids with the cyclic amides 2-pyrrolidinone and 2-imidazolidinone. CrystEngComm. 11, 1609–1614 (2009). https://doi.org/10.1039/b901453e

    Article  CAS  Google Scholar 

  11. G.E. Delgado, Co-crystal of succinic acid with imidazolidin-2-one: crystal structure and hirshfeld surface analysis. Faculty Sci 21(2), 195–206 (2020)

    CAS  Google Scholar 

  12. H. Veith, M. Zaeh, C. Luebbert, N. Rodríguez-Hornedo, G. Sadowski, Stability of pharmaceutical co-crystals at humid conditions can be predicted. Pharmaceutics (2021). https://doi.org/10.3390/pharmaceutics13030433

    Article  Google Scholar 

  13. J.M. Ha, B.D. Hamilton, M.A. Hillmyer, M.D. Ward, Phase behavior and polymorphism of organic crystals confined within nanoscale chambers. Cryst. Growth Des. 9(11), 4766–4777 (2009). https://doi.org/10.1021/cg9006185

    Article  CAS  Google Scholar 

  14. J. Peng, M. Tamura, M. Yabushita, R. Fujii, Y. Nakagawa, K. Tomishige, CeO2-catalyzed synthesis of 2-imidazolidinone from ethylenediamine carbamate. ACS Omega 6(41), 27527–27535 (2021). https://doi.org/10.1021/acsomega.1c04516

    Article  CAS  Google Scholar 

  15. A. Casnati, E. Motti, R. Mancuso, B. Gabriele, N. Della Ca’, Recent advances in the catalytic synthesis of imidazolidin-2-ones and benzimidazolidin-2-ones. Catalysts (2019). https://doi.org/10.3390/catal9010028

    Article  Google Scholar 

  16. B. Riscob, M. Shakir, J. Kalyana Sundar, S. Natarajan, M.A. Wahab, G. Bhagavannarayana, Synthesis, growth, crystal structure and characterization of a new organic material: glycine glutaric acid. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 78(1), 543–548 (2011). https://doi.org/10.1016/j.saa.2010.11.026

    Article  CAS  Google Scholar 

  17. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Synthesis, growth, characterization and quantum chemical investigations of a promising organic nonlinear optical material: thiourea-glutaric acid (Elsevier, Amsterdam, 2018)

    Google Scholar 

  18. C.R.T. Kumari et al., A brief study on optical and mechanical properties of an organic material: urea glutaric acid (2/1)—a third order nonlinear optical single crystal. Crystals (2021). https://doi.org/10.3390/cryst11101239

    Article  Google Scholar 

  19. A. Marahatta, A.B. Marahatta, A DFT analysis for the electronic structure, Mulliken charges distribution and frontier molecular orbitals of monolayer graphene sheet. Int. J. Progress Sci. Technol. 16(1), 51–65 (2019)

    Google Scholar 

  20. M. Prasath, M. Govindammal, B. Sathya, Spectroscopic investigations (FT-IR and FT-Raman) and molecular docking analysis of 6-[1-methyl-4-nitro-1H-imidazol-5-yl) sulfonyl]-7H-purine. J. Mol. Struct. (2017). https://doi.org/10.1016/j.molstruc.2017.05.136

    Article  Google Scholar 

  21. R. Farooq et al., Synthesis, nonlinear optical analysis and DFT studies of D-π-D and A-π-A configured Schiff bases derived from bis-phenylenediamine. RSC Adv. 12(50), 32185–32196 (2022). https://doi.org/10.1039/d2ra05844h

    Article  CAS  Google Scholar 

  22. M.J. Frisch et al., in Gaussian 09, Revision B.01. (Gaussian Inc., Wallingford, 2009), pp.1–20

    Google Scholar 

  23. A.J.H.A. Frisch, A.B. Nielson, GAUSS view user’s manual (Gaussian Inc., Pittsburgh, 2000)

    Google Scholar 

  24. M.H. Jamroz, Vibrational energy distribution analysis VEDA 4, Warsaw&#8221

  25. N.M. O’Boyle, A.L. Tenderholt, K.M. Langner, J. Comp. Chem. 29, 839–845 (2008)

    Article  Google Scholar 

  26. M.A.S.S.K. .Wolff, D.J. Grimwood, J.J. McKinnon, D.Jayatilaka, “Crystal explorer,” Univ. West. Aust, 2012

  27. S.S. Batsanov, Van der Waals radii of elements. Inorg. Mater. 37(9), 871–885 (2001). https://doi.org/10.1023/A:1011625728803

    Article  CAS  Google Scholar 

  28. C. Usha, R. Santhakumari, L. Joseph, D. Sajan, R. Meenakshi, A. Sinthiya, Growth and combined experimental and quantum chemical study of glycyl-L-Valine crystal. Heliyon 5(5), e01574 (2019). https://doi.org/10.1016/j.heliyon.2019.e01574

    Article  CAS  Google Scholar 

  29. P. Mehdizadeh et al., Rapid microwave fabrication of new nanocomposites based on Tb–Co–O nanostructures and their application as photocatalysts under UV/Visible light for removal of organic pollutants in water. Arab. J. Chem. 16(4), 104579 (2023). https://doi.org/10.1016/j.arabjc.2023.104579

    Article  CAS  Google Scholar 

  30. M. Meyns et al., Polymer-enhanced stability of inorganic perovskite nanocrystals and their application in color conversion LEDs. ACS Appl. Mater. Interfaces 8, 19579–19586 (2016). https://doi.org/10.1021/acsami.6b02529

    Article  CAS  Google Scholar 

  31. J. Wu, J. Zou, X. Zhuge, Z. Jia, N. Lin, C. Yuan, Design, synthesis, and characterization of pyridine-containing organic crystals with different substitution positions using solvothermal method. CrystEngComm. 23(17), 3152–3159 (2021). https://doi.org/10.1039/d1ce00165e

    Article  CAS  Google Scholar 

  32. J.J. McKinnon, M.A. Spackman, A.S. Mitchell, Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. Acta Crystall. Sect. B Struct. Sci. (2004). https://doi.org/10.1107/S0108768104020300

    Article  Google Scholar 

  33. R. Saraf, A. Mathur, V. Maheshwari, Polymer-controlled growth and wrapping of perovskite single crystals leading to better device stability and performance. ACS Appl. Mater. Interfaces 12(22), 25011–25019 (2020). https://doi.org/10.1021/acsami.0c04346

    Article  CAS  Google Scholar 

  34. I.A. Shaaban, Conformational analysis, infrared/Raman spectral assignment, and electronic structural studies of 1,3-dimethyl-2-imidazolidinone using quantum chemical calculations. J. Mol. Struct. 1175, 708–720 (2019). https://doi.org/10.1016/j.molstruc.2018.08.015

    Article  CAS  Google Scholar 

  35. S.R. Yousefi, A. Sobhani, H.A. Alshamsi, M. Salavati-Niasari, Green sonochemical synthesis of BaDy2NiO5/Dy2O3 and BaDy2NiO5/NiO nanocomposites in the presence of core almond as a capping agent and their application as photocatalysts for the removal of organic dyes in water. RSC Adv. 11, 11500–11512 (2021). https://doi.org/10.1039/d0ra10288a

    Article  CAS  Google Scholar 

  36. J. Mohan, Organic spectroscopy principles and applications (Alpha Science Ltd, 2004)

    Google Scholar 

  37. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, Synthesis, characterization and application of Co/Co3O4 nanocomposites as an effective photocatalyst for discoloration of organic dye contaminants in wastewater and antibacterial properties. J. Mol. Liq. 337, 116405 (2021). https://doi.org/10.1016/j.molliq.2021.116405

    Article  CAS  Google Scholar 

  38. S.R. Yousefi et al., Dy2BaCuO5/Ba4DyCu3O9.09 S-scheme heterojunction nanocomposite with enhanced photocatalytic and antibacterial activities. J. Am. Ceram. Soc. 104(7), 2952–2965 (2021). https://doi.org/10.1111/jace.17696

    Article  CAS  Google Scholar 

  39. J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8–10, 569–585 (1972)

    Article  Google Scholar 

  40. S.R. Yousefi, M. Masjedi-Arani, M.S. Morassaei, M. Salavati-Niasari, H. Moayedi, Hydrothermal synthesis of DyMn2O5/Ba3Mn2O8 nanocomposite as a potential hydrogen storage material. Int. J. Hydrogen Energy 44(43), 24005–24016 (2019). https://doi.org/10.1016/j.ijhydene.2019.07.113

    Article  CAS  Google Scholar 

  41. Y. Kessentini, A. Ben Ahmed, S.S. Al-Juaid, T. Mhiri, Z. Elaoud, Synthesis and non linear optical properties of new inorganic-organic hybrid material: 4-benzylpiperidinium sulfate monohydrate. Opt. Mater. 53, 101–108 (2016). https://doi.org/10.1016/j.optmat.2016.01.035

    Article  CAS  Google Scholar 

  42. V. Sivasubramani et al., Directional growth, physicochemical and quantum chemical investigations on pyridinium 2-carboxylate: 4-nitrophenol (P2C4N) single crystal for nonlinear optical (NLO) applications. New. J. Chem. 42(6), 4261–4277 (2018). https://doi.org/10.1039/c7nj03928j

    Article  CAS  Google Scholar 

  43. B.S.M. Prasath, Chemical calculation and molecular docking evaluation of liquiritigenin: an influenza A (H1N1) neuraminidase inhibitor (Springer, Netherlands, 2019)

    Google Scholar 

  44. F. Li, Z. Zheng, S. Xia, L. Yu, Synthesis, co-crystal structure, and DFT calculations of a multicomponent co-crystal constructed from 1H-benzotriazole and tetrafluoroterephthalic acid. J. Mol. Struct. 1219, 128480 (2020). https://doi.org/10.1016/j.molstruc.2020.128480

    Article  CAS  Google Scholar 

  45. F. Bardak et al., Conformational, electronic, and spectroscopic characterization of isophthalic acid (monomer and dimer structures) experimentally and by DFT. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 165, 33–46 (2016). https://doi.org/10.1016/j.saa.2016.03.050

    Article  CAS  Google Scholar 

  46. P. Karuppasamy et al., Growth, structural, optical, thermal, laser damage threshold and theoretical investigations of organic nonlinear optical 2-aminopyridinium 4-nitrophenolate 4-nitrophenol (2AP4N) single crystal. J. Mater. Sci. Mater. Electron. 30(2), 1553–1570 (2019). https://doi.org/10.1007/s10854-018-0427-9

    Article  CAS  Google Scholar 

  47. R. Kaliammal, S. Sudhahar, G. Parvathy, K. Velsankar, K. Sankaranarayanan, Physicochemical and DFT studies on new organic bis-(2-amino-6-methylpyridinium) succinate monohydrate good quality single crystal for nonlinear optical applications. J. Mol. Struct. 1212, 128069 (2020). https://doi.org/10.1016/j.molstruc.2020.128069

    Article  CAS  Google Scholar 

  48. N. Benhalima, A. Djedouani, R. Rahmani, A. Chouaih, F. Hamzaoui, H. Elandaloussi, Molecular structure, Mulliken charges, HOMO–LUMO, electrostatic potential and nonlinear optical properties of zwitterionic 6-methyl-2-oxo-3-[1-(ureidoiminio)ethyl]-2H-pyran-4-olate monohydrate molecule by HF and DFT methods UK World. J. Model. Simul. 1(1), 3–11 (2018)

    Google Scholar 

  49. S. Sambandam, B. Sarangapani, S. Paramasivam, R. Chinnaiyan, Molecular structure, vibrational spectral investigations (Ft-ir and ft-raman), nlo, nbo, homo-lumo, mep analysis of (e)-2-(3-pentyl-2,6-diphenylpiperidin-4-ylidene)-n-phenylhydrazinecarbothioamide based on dft and molecular docking studies. Biointerface Res. Appl. Chem. 11(4), 11833–11855 (2021). https://doi.org/10.33263/BRIAC114.1183311855

    Article  CAS  Google Scholar 

  50. S. Muthu, M. Prasath, E.I. Paulraj, R.A. Balaji, Spectrochimica acta part a: molecular and biomolecular spectroscopy FT-IR, FT-Raman spectra and ab initio HF and DFT calculations. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 120, 185–194 (2014). https://doi.org/10.1016/j.saa.2013.09.150

    Article  CAS  Google Scholar 

  51. Z.M.M. Žini, ć Snežzana Miljanić, L. Frkanec, T. Biljan, Recent advances in linear and nonlinear raman spectroscopy I. J. Raman Spectrosc. 38, 1538–1553 (2007)

    Article  Google Scholar 

  52. S. Chinnasami, R. Paulraj, P. Ramasamy, Bulk crystal growth, spectroscopic, hirshfeld surface analysis, physicochemical and quantum chemical investigations on 2-ethylimidazolium D-tartrate single crystal. J. Mol. Struct. 1238, 130448 (2021). https://doi.org/10.1016/j.molstruc.2021.130448

    Article  CAS  Google Scholar 

  53. F. Weinhold, C.R. Landis, A.E. Reed, Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Educ. Res. Pr. 2, 91–104 (2001)

    Article  CAS  Google Scholar 

  54. B.A.S. Mendis, K.M.N. De Silva, A comprehensive study of linear and non-linear optical properties of novel charge transfer molecular systems. J. Mol. Struct. Theochem. 678, 1–3 (2004). https://doi.org/10.1016/j.theochem.2004.02.027

    Article  CAS  Google Scholar 

  55. H. Raval, B.B. Parekh, K.D. Parikh, M.J. Joshi, Growth and characterizations of organic NLO imidazolium L-tartrate (IMLT) single crystal. Condens. Matter. Phys. Adv. (2019). https://doi.org/10.1155/2019/3853215

    Article  Google Scholar 

  56. N. Sudharsana, B. Keerthana, R. Nagalakshmi, V. Krishnakumar, L. Guru Prasad, Growth and characterization of hydroxyethylammonium picrate single crystals for third-order nonlinear optical applications. Mater. Chem. Phys. 134, 2–3 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.062

    Article  CAS  Google Scholar 

  57. P. Karuppasamy, V. Sivasubramani, M.S. Pandian, P. Ramasamy, Growth and characterization of semi-organic third order nonlinear optical (NLO) potassium 3,5-dinitrobenzoate (KDNB) single crystals. RSC Adv. 6(110), 109105–109123 (2016). https://doi.org/10.1039/c6ra21590d

    Article  CAS  Google Scholar 

  58. A. Mathur, P. Halappa, C. Shivakumara, Synthesis and characterization of Sm3 + activated La1 – xGdxPO4 phosphors for white LEDs applications. J. Mater. Sci. Mater. Electron. 29(23), 19951–19964 (2018). https://doi.org/10.1007/s10854-018-0125-7

    Article  CAS  Google Scholar 

  59. F. Helen, G. Kanchana, M. Thenmozhi, V. Siva, Structural investigation, thermal, electrical and optical properties of NLO active single crystal for optoelectronic device applications. J. Mater. Sci. Mater. Electron. 31(20), 17158–17172 (2020). https://doi.org/10.1007/s10854-020-04248-z

    Article  CAS  Google Scholar 

  60. S.K. Kurtz, T.T. Perry, A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39(8), 3798–3813 (1968). https://doi.org/10.1063/1.1656857

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

KK: Conceptualization; Methodology; Validation; Formal analysis; Investigation; Resources; Writing—Original Draft; Writing—Review & Editing; CS: Conceptualization; Methodology; Validation; Formal analysis; Writing—Original Draft; Writing—Review & Editing and Supervision; KSD: Methodology; Validation; Formal analysis; Writing—Original Draft; Writing—Review & Editing; MS: Formal analysis; Writing—Original Draft & Review; PS: Formal analysis; Writing – Original Draft & Review.

Corresponding author

Correspondence to P. Srinivasan.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Consent to publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 673.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthika, K., Senthilkumar, C., Dhivya, K.S. et al. Crystal growth, structural, optical, thermal, second-order nonlinear optical and quantum chemical analyses of glutaric acid 2-imidazolidinone crystal. J Mater Sci: Mater Electron 34, 1652 (2023). https://doi.org/10.1007/s10854-023-11061-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11061-x

Navigation