Skip to main content

Advertisement

Log in

Development of non-enzymatic D-glucose and ethanol electroactive electrode based on ZnO–Cu/C multifunctional nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, the fast microwave-assisted polyol method was proposed to synthesize a cluster-assembled nanostructure consisting of ZnO decorated with Cu nanoparticles and supported on Vulcan XC-72. Structures with a crystallite size of around 20 nm were determined by X-ray diffraction. Raman measurements indicated that incorporating metal oxides increases the defects in the carbon structure. The designed composite was used as an electrode to study the ethanol oxidation reaction (EOR) and the non-enzymatic glucose oxidation reaction (GOR). Cyclic voltammetry measurements revealed that ZnO–Cu/C has an electrochemical activity for both reactions, ascribed to the metal oxide–support interactions. For the EOR, the nanocomposite shows a current density of 18.6 mA cm−2 at 1.6 vs. RHE, while for the GOR, the nanomaterial delivers 10.1 mA cm−2 at 1.6 vs. RHE values that surpass the ones reported in the literature. Besides, the electrochemical impedance spectroscopy measurements revealed that the improvement in electrochemical activity was due to the small electron transfer resistance. Thus, a multifunctional composite based on a non-noble metal catalyst is reported for the first time, which delivers acceptable electrochemical activity for the EOR and the GOR. It is essential to highlight that the findings of this study open an avenue not only to the design and fabrication of EOR and GOR electroactive nanocomposites but also this material be used in energy conversion devices, considering that the proposed synthesis is simple and cost-effective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All the data are included in this work.

References

  1. J.J.B. Lidasan, J.A.D. del Rosario, J.D. Ocon, Ethanol electrooxidation on phase- and morphology-controlled Ni(OH)2 microspheres. Catalysts 10(7), 1–11 (2020)

    Article  Google Scholar 

  2. S. Stevanović, D. Tripković, A. Gavrilović-Wohlmuther, J. Rogan, U. Lačnjevac, V. Jovanović, Carbon supported PtSn versus PtSnO2 catalysts in methanol oxidation. Int. J. Electrochem. Sci. 16(1), 210222 (2021)

    Article  Google Scholar 

  3. F. Gao, Y. Zhang, B. Zou, F. Jiang, Z. Li, Y. Du, Facile synthesis of low-dimensional PdPt nanocrystals for high-performance electrooxidation of C 2 alcohols. J. Colloid Interface Sci. 610, 271–279 (2022)

    Article  CAS  Google Scholar 

  4. J. Zhao, K. Bao, M. Xie, D. Wei, K. Yang, X. Zhang, C. Zhang, Z. Wang, X. Yang, Two-dimensional ultrathin networked CoP derived from Co(OH)2 as efficient electrocatalyst for hydrogen evolution. Adv. Compos. Hybrid Mater. 5(3), 2421–2428 (2022)

    Article  CAS  Google Scholar 

  5. A. Peña-Duarte, S.H. Vijapur, T.D. Hall, K.L. Hayes, E. Larios-Rodríguez, J.D. Pilar-Albaladejo, M.E.B. Santiago, S. Snyder, J. Taylor, C.R. Cabrera, Iron quantum dots electro-assembling on Vulcan XC-72R: hydrogen peroxide generation for space applications. ACS Appl. Mater. Interfaces 13(25), 29585–29601 (2021)

    Article  Google Scholar 

  6. R. Wang, Z. Zhang, P. Du, Z. Fu, K. Huang, K. Xu, Y. Du, D. Fan, R. Zhang, M. Lei, Efficient synthesis of sulfur-modified cobalt hydroxide self-supported electrocatalysts for enhanced oxygen evolution. Adv. Compos. Hybrid Mater. 5(3), 2491–2499 (2022)

    Article  CAS  Google Scholar 

  7. L.L. Sikeyi, T.D. Ntuli, T.H. Mongwe, N.W. Maxakato, E. Carleschi, B.P. Doyle, N.J. Coville, M.S. Maubane-Nkadimeng, Microwave assisted synthesis of nitrogen doped and oxygen functionalized carbon nano onions supported palladium nanoparticles as hybrid anodic electrocatalysts for direct alkaline ethanol fuel cells. Int. J. Hydrog. Energy 46(18), 10862–10875 (2021)

    Article  CAS  Google Scholar 

  8. Q. Zhang, T. Chen, R. Jiang, F. Jiang, Comparison of electrocatalytic activity of Pt1–xPdx/C catalysts for ethanol electro-oxidation in acidic and alkaline media. RSC Adv. 10(17), 10134–10143 (2020)

    Article  CAS  Google Scholar 

  9. H. Yang, T. Guo, K. Qin, Q. Liu, Different interlayer anions controlled zinc cobalt layered double hydroxide nanosheets for ethanol electrocatalytic oxidation. J. Phys. Chem. C 125(45), 24867–24875 (2021)

    Article  CAS  Google Scholar 

  10. J. Sang, Y. Li, J. Yang, T. Wu, X. Luo, W. Guan, M. Chai, Y. Zhao, J. Xu, S.C. Singhal, Efficient conversion of ethanol to electricity using large-scale flat-tube solid oxide fuel cells. Int. J. Hydrog. Energy (2023). https://doi.org/10.1016/j.ijhydene.2023.04.347

    Article  Google Scholar 

  11. J. Guo, R. Chen, F.-C. Zhu, S.-G. Sun, H.M. Villullas, New understandings of ethanol oxidation reaction mechanism on Pd/C and Pd2Ru/C catalysts in alkaline direct ethanol fuel cells. Appl. Catal. B 224, 602–611 (2018)

    Article  CAS  Google Scholar 

  12. L.R. Vidales-Gallardo, E.N. Armendáriz-Mireles, G.G. Suarez-Velázquez, E. Rocha-Rangel, W.J. Pech-Rodríguez, Green and cost-effective synthesis of NiSn alloys by using intermittent microwave heating process as electrocatalysts for ethanol oxidation in alkaline solution. J. Mater. Res. 36(20), 4207–4215 (2021)

    Article  CAS  Google Scholar 

  13. E. Antolini, External abiotic glucose fuel cells. Sust. Energy Fuels 5(20), 5038–5060 (2021)

    Article  CAS  Google Scholar 

  14. H. Sakai, T. Nakagawa, Y. Tokita, T. Hatazawa, T. Ikeda, S. Tsujimura, K. Kano, A high-power glucose/oxygen biofuel cell operating under quiescent conditions. Energy Environ. Sci. 2(1), 133–138 (2009)

    Article  CAS  Google Scholar 

  15. H. Cha, O. Kwon, J. Kim, H. Choi, H. Yoo, H. Kim, T. Park, Effects of the anode diffusion layer on the performance of a nonenzymatic electrochemical glucose fuel cell with a proton exchange membrane. ACS Omega 6(50), 34752–34762 (2021)

    Article  CAS  Google Scholar 

  16. M. Eqi, C. Shi, J. Xie, F. Kang, H. Qi, X. Tan, Z. Huang, J. Liu, J. Guo, Synergetic effect of Ni–Au bimetal nanoparticles on urchin-like TiO2 for hydrogen and arabinose co-production by glucose photoreforming. Adv. Compos. Hybrid Mater. 6(1), 5 (2022)

    Article  Google Scholar 

  17. M. Zhiani, S. Barzi, A. Ahmadi, F. Vizza, H. Gharibi, A. Azhari, Ex vivo energy harvesting by a by-pass depletion designed abiotic glucose fuel cell operated with real human blood serum. J. Power Sources 521, 230972 (2022)

    Article  CAS  Google Scholar 

  18. T. Liu, Glucose fuel cells and membranes: a brief overview and literature analysis. Sustainability 14, 8376 (2022)

    Article  CAS  Google Scholar 

  19. P. Simons, S.A. Schenk, M.A. Gysel, L.F. Olbrich, J.L.M. Rupp, A ceramic-electrolyte glucose fuel cell for implantable electronics. Adv. Mater. 34(24), 2109075 (2022)

    Article  CAS  Google Scholar 

  20. Z. Tian, Y. Da, M. Wang, X. Dou, X. Cui, J. Chen, R. Jiang, S. Xi, B. Cui, Y. Luo, H. Yang, Y. Long, Y. Xiao, W. Chen, Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom pt decorated defective TiO2. Nat. Commun. 14(1), 142 (2023)

    Article  CAS  Google Scholar 

  21. W.J. Pech-Rodríguez, L.C. Ordóñez, F.E. Valdez-Ramírez, H. Pérez-Mata, A fast and inexpensive strategy to fabricate ZnO–Cu composites as non-precious electrocatalysts for ethanol oxidation reaction in alkaline media. J. Appl. Electrochem. (2023). https://doi.org/10.1007/s10800-023-01896-x

    Article  Google Scholar 

  22. X. Atanacio-Sánchez, W.J. Pech-Rodríguez, E.N. Armendáriz-Mireles, J.A. Castillo-Robles, P.C. Meléndez-González, Rocha-Rangel, improving performance of ZnO flexible dye sensitized solar cell by incorporation of graphene oxide. Microsyst. Technol. 26(12), 3591–3599 (2020)

    Article  Google Scholar 

  23. Q.A. Yousif, K.M. Mahdi, H.A. Alshamsi, Enhanced photovoltaic performance of dye-sensitized solar cell based on ZnO nanoparticles and ZnO/graphene nanocomposites. J. Chin. Chem. Soc. 68(9), 1637–1643 (2021)

    Article  CAS  Google Scholar 

  24. V. Murugadoss, D.Y. Kang, W.J. Lee, I.G. Jang, T.G. Kim, Fluorine-induced surface modification to obtain stable and low energy loss zinc oxide/perovskite interface for photovoltaic application. Adv. Compos. Hybrid Mater. 5(2), 1385–1395 (2022)

    Article  CAS  Google Scholar 

  25. M. Tomić, M. Claros, I. Gràcia, E. Figueras, C. Cané, S. Vallejos, ZnO structures with surface nanoscale interfaces formed by au, Fe2O3, or Cu2O modifier nanoparticles: characterization and gas sensing properties. Sensors 21(13), 4509 (2021)

    Article  Google Scholar 

  26. A.A. Sakib, S.M. Masum, J. Hoinkis, R. Islam, M.A. Molla, Synthesis of CuO/ZnO nanocomposites and their application in photodegradation of toxic textile dye. J. Compos. Sci. 3(3), 91 (2019)

    Article  Google Scholar 

  27. R. Nithya, S. Ragupathy, D. Sakthi, V. Arun, N. Kannadasan, Photocatalytic efficiency of brilliant green dye on ZnO loaded on cotton stalk activated carbon. Mater. Res. Express 7(7), 075002 (2020)

    Article  CAS  Google Scholar 

  28. J.M.L. Reis, S.A. Martins, H.S. da Costa Mattos, Combination of temperature and electrical conductivity on semiconductor graphite/epoxy composites. J. Brazilian Soc. Mech. Sci. Eng. 42(8), 404 (2020)

    Article  CAS  Google Scholar 

  29. S.W. Lee, S.R. Choi, J. Jang, G.-G. Park, S.H. Yu, J.-Y. Park, Tolerance to carbon corrosion of various carbon structures as catalyst supports for polymer electrolyte membrane fuel cells. J. Mater. Chem. A 7(43), 25056–25065 (2019)

    Article  CAS  Google Scholar 

  30. T. Tian, Y. Cheng, Z. Sun, K. Huang, M. Lei, H. Tang, Carbon nanotubes supported oxygen reduction reaction catalysts: role of inner tubes. Adv. Compos. Hybrid Mater. 6(1), 7 (2022)

    Article  Google Scholar 

  31. A. Sharma, A. Agrawal, G. Pandey, S. Kumar, K. Awasthi, A. Awasthi, Carbon nano-onion-decorated ZnO composite-based enzyme-less electrochemical biosensing approach for glucose. ACS Omega 7(42), 37748–37756 (2022)

    Article  CAS  Google Scholar 

  32. J. Zhan, Z. Miao, M. Cai, Q. Li, Boosting ethanol oxidation over nickel oxide through construction of quasi-one-dimensional morphology and hierarchically porous structure. Trans. Nonferrous Met. Soc. China 30(6), 1615–1624 (2020)

    Article  CAS  Google Scholar 

  33. H. Wang, A. Guan, J. Zhang, Y. Mi, S. Li, T. Yuan, C. Jing, L. Zhang, L. Zhang, G. Zheng, Copper-doped nickel oxyhydroxide for efficient electrocatalytic ethanol oxidation. Chin. J. Catal. 43(6), 1478–1484 (2022)

    Article  CAS  Google Scholar 

  34. J. Zhang, K. Wang, L. Fan, H. Liu, H. Zhu, S. Yan, High-valence metal doped Co2FeAl alloy as efficient noble-metal-free electrocatalyst for alkaline hydrogen evolution reaction. J. Alloys Compd. 933, 167613 (2023)

    Article  CAS  Google Scholar 

  35. A.A. Siller-Ceniceros, E. Sánchez-Castro, D. Morales-Acosta, J.R. Torres-Lubián, E. Martínez-Guerra, J. Rodríguez-Varela, Functionalizing reduced graphene oxide with Ru-organometallic compounds as an effective strategy to produce high-performance pt nanocatalysts for the methanol oxidation reaction. ChemElectroChem 6(18), 4902–4916 (2019)

    Article  CAS  Google Scholar 

  36. J. Park, S. Bae, J.-S. Park, S. Bong, J. Lee, Crusty-structured Cu@NiCo nanoparticles as anode catalysts in alkaline fuel cells. ACS Appl. Nano Mater. 4(8), 8145–8153 (2021)

    Article  CAS  Google Scholar 

  37. S. Murali, P.K. Dammala, B. Rani, R. Santhosh, C. Jadhao, N.K. Sahu, Polyol mediated synthesis of anisotropic ZnO nanomaterials and composite with rGO: application towards hybrid supercapacitor. J. Alloys Compd. 844, 156149 (2020)

    Article  CAS  Google Scholar 

  38. W.J. Pech-Rodríguez, E. Rocha-Rangel, C.A. Calles-Arriaga, G. Vargas-Gutiérrez, F.J. Rodríguez-Varela, Study of the electrophoretic deposition copper–carbon nanotubes composite coatings in deep eutectic solvent using a Taguchi experimental design approach. Adv. Appl. Ceram. (2018). https://doi.org/10.1080/17436753.2018.1495896

    Article  Google Scholar 

  39. P.K. Chaudhary, G. Deo, Influence of particle size and metal-support interaction on the catalytic performance of Ni–Al2O3 catalysts for the dry and oxidative-dry reforming of methane. Colloids Surf. A 646, 128973 (2022)

    Article  CAS  Google Scholar 

  40. T. Riaz, N. Assey, M. Javed, T. Shahzadi, M. Zaib, S. Shahid, S. Iqbal, E.B. Elkaeed, R.M. Alzhrani, H.O. Alsaab, N.S. Awwad, H.A. Ibrahium, U. Fatima, Biogenic plant mediated synthesis of monometallic zinc and bimetallic copper/zinc nanoparticles and their dye adsorption and antioxidant studies. Inorg. Chem. Commun. 140, 109449 (2022)

    Article  CAS  Google Scholar 

  41. F.L.S. Purgato, L.A. Montoro, J. Ribeiro, K.B. Kokoh, P. Olivi, The effect of heat treatment on the preparation of Pt–RuO2/C electrocatalysts. Electrocatalysis 1(2), 122–128 (2010)

    Article  CAS  Google Scholar 

  42. C.E. Velazquez-Gonzalez, E.N. Armendariz-Mireles, W.J. Pech-Rodriguez, D. González-Quijano, E. Rocha-Rangel, Improvement of dye sensitized solar cell photovoltaic performance by using a ZnO-semiconductor processed by reaction bonded. Microsyst. Technol. 1(12), 4567–4575 (2019)

    Article  Google Scholar 

  43. D.D. Thongam, J. Gupta, N.K. Sahu, Effect of induced defects on the properties of ZnO nanocrystals: surfactant role and spectroscopic analysis. SN Appl. Sci. 1(9), 1030 (2019)

    Article  CAS  Google Scholar 

  44. S. Hosseini Largani, M. Akbarzadeh, Pasha, The effect of concentration ratio and type of functional group on synthesis of CNT–ZnO hybrid nanomaterial by an in situ sol–gel process. Int. Nano Lett. 7(1), 25–33 (2017)

    Article  CAS  Google Scholar 

  45. J. Ghosh, R. Ghosh, P.K. Giri, Tuning the visible photoluminescence in Al doped ZnO thin film and its application in label-free glucose detection. Sens. Actuators B 254, 681–689 (2018)

    Article  CAS  Google Scholar 

  46. A. Mahmoud, M. Echabaane, K. Omri, J. Boudon, L. Saviot, N. Millot, R.B. Chaabane, Cu-doped ZnO nanoparticles for non-enzymatic glucose sensing. Molecules 26(4), 929 (2021)

    Article  CAS  Google Scholar 

  47. G. Sun, L. Zhou, J. Li, J. Tang, Y. Wang, Human hair-derived graphene-like carbon nanosheets to support pt nanoparticles for direct methanol fuel cell application. RSC Adv. 5(88), 71980–71987 (2015)

    Article  CAS  Google Scholar 

  48. J.C. Carrillo-Rodríguez, S. García-Mayagoitia, R. Pérez-Hernández, M.T. Ochoa-Lara, F. Espinosa-Magaña, F. Fernández-Luqueño, P. Bartolo-Pérez, I.L. Alonso-Lemus, F.J. Rodríguez-Varela, Evaluation of the novel PdCeO2-NR electrocatalyst supported on N-doped graphene for the oxygen reduction reaction and its use in a microbial fuel cell. J. Power Sources 414, 103–114 (2019)

    Article  Google Scholar 

  49. M. Vega-Cartagena, E.M. Flores-Vélez, G.S. Colón-Quintana, D.A. Blasini Pérez, M.A. De Jesús, C.R. Cabrera, Silver–palladium electrodeposition on unsupported Vulcan XC-72R for oxygen reduction reaction in alkaline media. ACS Appl. Energy Mater. 2(7), 4664–4673 (2019)

    Article  CAS  Google Scholar 

  50. S. Li, R. Xu, H. Wang, D.J.L. Brett, S. Ji, B.G. Pollet, R. Wang, Ultra-high surface area and mesoporous N-doped carbon derived from sheep bones with high electrocatalytic performance toward the oxygen reduction reaction. J. Solid State Electrochem. 21(10), 2947–2954 (2017)

    Article  CAS  Google Scholar 

  51. H.M. Fruehwald, I.I. Ebralidze, P.D. Melino, O.V. Zenkina, E.B. Easton, Probing the influence of the carbon support on the activity of Fe–N3/C model active sites for the oxygen reduction reaction. J. Electrochem. Soc. 167(8), 084520 (2020)

    Article  CAS  Google Scholar 

  52. T.T. Guaraldo, L.A. Goulart, F.C. Moraes, M.R.V. Lanza, Carbon black nanospheres modified with Cu (II)-phthalocyanine for electrochemical determination of Trimethoprim antibiotic. Appl. Surf. Sci. 470, 555–564 (2019)

    Article  CAS  Google Scholar 

  53. M.M. Alqahtani, A.M. Ali, F.A. Harraz, M. Faisal, A.A. Ismail, M.A. Sayed, M.S. Al-Assiri, Highly sensitive ethanol chemical sensor based on novel Ag-doped mesoporous α–Fe2O3 prepared by modified sol–gel process. Nanoscale Res. Lett. 13(1), 157 (2018)

    Article  Google Scholar 

  54. M.A. Matin, A. Kumar, M.A.H.S. Saad, M.J. Al-Marri, S. Suslov, Zn-enriched PtZn nanoparticle electrocatalysts synthesized by solution combustion for ethanol oxidation reaction in an alkaline medium. MRS Commun. 8(2), 411–419 (2018)

    Article  CAS  Google Scholar 

  55. Y.D.S. Pambudi, R. Setiabudy, A.H. Yuwono, E. Kartini, J.K. Lee, C. Hudaya, Effects of annealing temperature on the electrochemical characteristics of ZnO microrods as anode materials of lithium-ion battery using chemical bath deposition. Ionics 25(2), 457–466 (2019)

    Article  CAS  Google Scholar 

  56. J.-W. Kim, S.-M. Park, Electrochemical oxidation of ethanol at nickel hydroxide electrodes in alkaline media studied by electrochemical impedance spectroscopy. J. Korean Electrochem. Soc. 8, 117–124 (2005)

    Article  CAS  Google Scholar 

  57. A. Osornio, L.A. García, L.M. Blanco, R. Antaño, F. Castañeda, Electrochemical impedance spectrocopy study of glucose adsorption on gold nanoparticles-graphite paste electrode. MRS Adv. 2(49), 2713–2720 (2017)

    Article  CAS  Google Scholar 

  58. A. El Attar, L. Oularbi, S. Chemchoub, M.E. Rhazi, Preparation and characterization of copper oxide particles/polypyrrole (Cu2O/PPy) via electrochemical method: application in direct ethanol fuel cell. Int. J. Hydrog. Energy 45(15), 8887–8898 (2020)

    Article  Google Scholar 

  59. Z. Wang, Y. Liu, Y. Cheng, Y.-L. Men, P. Liu, L. Zhang, B. Dai, Y.-X. Pan, Fast and efficient electrocatalytic oxidation of glucose triggered by Cu2O–CuO nanoparticles supported on carbon nanotubes. Front. Chem. 10, 998812 (2022)

    Article  CAS  Google Scholar 

  60. A. El Golli, M. Echabaane, C. Dridi, Development of an electrochemical nanoplatform for non-enzymatic glucose sensing based on Cu/ZnO nanocomposite. Mater. Chem. Phys. 280, 125844 (2022)

    Article  CAS  Google Scholar 

  61. N.Q. Dung, T.T.T. Duong, T.D. Lam, D.D. Dung, N.N. Huy, D. Van Thanh, A simple route for electrochemical glucose sensing using background current subtraction of cyclic voltammetry technique. J. Electroanal. Chem. 848, 113323 (2019)

    Article  Google Scholar 

  62. G. Moggia, T. Kenis, N. Daems, T. Breugelmans, Electrochemical oxidation of D-glucose in alkaline medium: impact of oxidation potential and chemical side reactions on the selectivity to D-gluconic and D-glucaric acid. ChemElectroChem 7(1), 86–95 (2020)

    Article  CAS  Google Scholar 

  63. Y. Chen, Y. Tian, P. Zhu, L. Du, W. Chen, C. Wu, Electrochemically activated conductive Ni-based MOFs for non-enzymatic sensors toward long-term glucose monitoring. Front. Chem. 8, 602752 (2020)

    Article  CAS  Google Scholar 

  64. N. Schlegel, G.K.H. Wiberg, M. Arenz, On the electrooxidation of glucose on gold: towards an electrochemical glucaric acid production as value-added chemical. Electrochim. Acta 410, 140023 (2022)

    Article  CAS  Google Scholar 

  65. A. Kusior, Voltammetric detection of glucose—the electrochemical behavior of the copper oxide materials with well-defined facets. Sensors 22(13), 4783 (2022)

    Article  CAS  Google Scholar 

  66. W.-J. Liu, Z. Xu, D. Zhao, X.-Q. Pan, H.-C. Li, X. Hu, Z.-Y. Fan, W.-K. Wang, G.-H. Zhao, S. Jin, G.W. Huber, H.-Q. Yu, Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 11(1), 265 (2020)

    Article  CAS  Google Scholar 

  67. S. Hebié, T.W. Napporn, C. Morais, K.B. Kokoh, Size-dependent electrocatalytic activity of free gold nanoparticles for the glucose oxidation reaction. ChemPhysChem 17(10), 1454–1462 (2016)

    Article  Google Scholar 

  68. Z.K. Ghouri, K. Elsaid, A. Abdel-Wahab, A. Abdala, M.Z. Farhad, Electrooxidation behavior of ethanol toward carbon microbead-encapsulated ZnO particles derived from coffee waste. J. Mater. Sci.: Mater. Electron 31(9), 6530–6537 (2020)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Polytechnic University of Victoria for the infrastructure and time provided to develop the research. The author also acknowledges A. Martir-Cruz for the electrochemical measurements. We thank Martín Baas for Raman, Enrique Escobedo for XRD, and Tanit Toledano Thompson for SEM characterizations. Also, thanks to A. Martir-Cruz for the electrochemical measurements.

Funding

There is no funding to declare.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, WJP, FJR. and LCO; Methodology and experiments JRP and WJP; writing—original draft, WJP, FJR, and LCO. Supervision, WJP and LCO. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to W. J. Pech-Rodríguez.

Ethics declarations

Competing interest

The authors declare that they have not any competing financial interest or personal relationship that affects this work.

Ethical approval

This work did not require any ethical approval.

Consent for publication

All authors declare their consent for publication of the manuscript.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pech-Rodríguez, W.J., Pérez-Pesina, J.R., Ordóñez, L.C. et al. Development of non-enzymatic D-glucose and ethanol electroactive electrode based on ZnO–Cu/C multifunctional nanocomposite. J Mater Sci: Mater Electron 34, 1615 (2023). https://doi.org/10.1007/s10854-023-11042-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11042-0

Navigation