Skip to main content
Log in

A high-performance Sn–Sb–Cu alloy processed by pressure heat treatment: microstructure, thermal and mechanical properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Here, we present a notable achievement in the development of Sn-5.5Sb-0.7Cu (SSC-557) alloy by employing pressure heat treatment (PHT) during the casting process. The resultant SSC-557-PHT alloy exhibits remarkable mechanical properties and demonstrates superior thermal characteristics. In comparison to the commonly utilized SSC-557 alloy, the SSC-557-PHT alloy demonstrates a substantial increase in both yield strength (YS) ~ 90.5% and ultimate tensile strength (UTS) ~ 86.8% at room temperature (RT), while preserving its ductility. The remarkable strength properties exhibited by the SSC-557-PHT alloy can be attributed to various factors. First, the alloy benefits from the reinforcement of fine-grain structure, thereby augmenting its overall mechanical performance. Moreover, the formation of a heterogeneous structure and the reduction in size of Cu6Sn5 and SbSn IMCs contribute significantly to the enhanced strength characteristics. These refined structures effectively serve as sources of dislocation and obstacles, thereby further enhancing the mechanical strength of the alloy. Furthermore, differential scanning calorimetry (DSC) analysis was conducted, revealing notable changes in thermal behavior after the application of pressure heat treatment (PHT). Specifically, the peak temperature decreased from 243.7 to 235.4 °C, the pasty range narrowed from 6.2 to 4 °C, and the undercooling decreased from 9.1 to 3.2 °C. These findings highlight the positive impact of PHT on the alloy’s thermal characteristics, making it more suitable for practical applications. The results obtained in this study are expected to contribute significantly to closing the existing knowledge gap regarding the performance characteristics of recently developed solder alloys when subjected to PHT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Raw data were generated at Physics department—Faculty of Science—Zagazig University. Derived data supporting the findings of this study are available from the author upon request.

References

  1. E. Çadırlı, H. Kaya, J. Mater. Sci. Mater. Electron. 22, 1378 (2011)

    Article  Google Scholar 

  2. E. Çadırlı, U. Böyük, S. Engin, H. Kaya, N. Maraşlı, M. Arı, J. Mater. Sci. Mater. Electron. 21, 468 (2010)

    Article  Google Scholar 

  3. K. Suganuma, S. Kim, K. Kim, High-temperature lead-free solders: properties and possibilities. JOM-J. Met. 61, 64 (2009)

    Article  CAS  Google Scholar 

  4. T. Lee, T.R. Bieler, C. Kim, H. Ma, Fundamentals of Lead-Free Solder Interconnect Technology: From Microstructures to Reliabilty (Springer, New York, 2015)

    Book  Google Scholar 

  5. A.R. Geranmayeh, R. Mahmoudi, F. Khalatbari, N. Kashi, G. Nayyeri, J. Electron. Mater. 43, 717 (2014)

    Article  CAS  Google Scholar 

  6. M.D. Mathew, H. Yang, S. Movva, K.L. Murty, Metall. Mater. Trans. A 36, 99 (2005)

    Article  Google Scholar 

  7. R. Mahmudi, A.R. Geranmayeh, M. Allami, M. Bakherad, J. Electron. Mater. 36, 1703 (2007)

    Article  CAS  Google Scholar 

  8. F. Campana, D. Pilone, Scripta Mater. 60(8), 679 (2009)

    Article  CAS  Google Scholar 

  9. P. Czaja, M. Fitta, J. Przewoznik, W. Maziarz, J. Morgiel, T. Czeppe, E. Cesari, Acta Mater. 103, 30 (2016)

    Article  CAS  Google Scholar 

  10. C. Wu, S. Yang, Y. Li, Y. Ma, L. Zhang, J. Liu, S. Han, J. Alloys Compd. 665, 231 (2016)

    Article  CAS  Google Scholar 

  11. X. Liu, P. Ma, Y.D. Jia, Z.J. Wei, C.J. Suo, P.C. Ji, X.R. Shi, Z.S. Yu, K.G. Prashanth, J. Mater, Res. Technol. 9(3), 2983 (2020)

    CAS  Google Scholar 

  12. Z. Wei, W. Jiang, C. Zou, H. Wang, W. Zhao, J. Alloys Compd. 692, 629 (2017)

    Article  CAS  Google Scholar 

  13. W. Hai-Yan, L. Jian-Hua, P. Gui-Rong, W. Wen-Kui, Chin. Phys. B 19(9), 096203 (2010)

    Article  Google Scholar 

  14. E.A. Eid, A.M. Deghady, A.N. Fouda, Mater. Sci. Eng. A 743, 726 (2019)

    Article  CAS  Google Scholar 

  15. K.Y. Guo, C. Xu, X.P. Lin, Y.E. Jie, C. Zhang, D. Huang, J. Nonferrous Metal Soc. of China 30(1), 99 (2020)

    Article  CAS  Google Scholar 

  16. L. Wu, L. Liu, J. Liu, R. Zhang, Mater. Trans. 53(3), 504 (2012)

    Article  CAS  Google Scholar 

  17. Y. Chen, Y.L. Li, J.H. Liu, R.J. Zhang, Mater. Trans. 54(2), 184 (2013)

    Article  CAS  Google Scholar 

  18. L. Gong, L. Jian-Hua, W.K. Wang, R.P. Liu, Chin. Phys. B 19(9), 096202 (2010)

    Article  Google Scholar 

  19. Y. Chen, L. Liu, Y.H. Wang, J.H. Liu, R.J. Zhang, Trans. Nonferrous Met. Soc. China 21, 2205 (2011)

    Article  CAS  Google Scholar 

  20. M.L. Huang, C.M.L. Wu, J.K.L. Lai, L. Wang, F.G. Wang, J. Mater. Sci. Mater. Elec. 11, 57 (2000)

    Article  CAS  Google Scholar 

  21. E.A. Eid, A.N. Fouda, M.D. El-Shazly, Mater. Sci. Eng. A 657, 104 (2016)

    Article  CAS  Google Scholar 

  22. R. Mahmudi, R. Alizadeh, A.R. Geranmayeh, Scr. Mater. 64, 521 (2011)

    Article  CAS  Google Scholar 

  23. E.A. Eid, M.A. Ramadan, A.B. El Basaty, Engineering 10, 21 (2018)

    Article  CAS  Google Scholar 

  24. H.Y. Wang, J.H. Liu, G.R. Peng, W.K. Wang, Chin. Phys. B 19(9), 096203 (2010)

    Article  Google Scholar 

  25. A.A. El-Daly, N.A.M. Eid, A.A. Ibrahiem, Mater. Chem. Phys. 295, 127209 (2022)

    Article  Google Scholar 

  26. A.A. El-Daly, A.A. Ibrahiem, N.A.M. Eid, J. Mater. Sci.: Mater. Electron. 32, 19889 (2021)

    Google Scholar 

  27. Y. Tang, S.M. Luo, W.F. Huang, Y.C. Pan, G.Y. Li, J. Alloys Compd. 719, 365 (2017)

    Article  CAS  Google Scholar 

Download references

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. El-Taher.

Ethics declarations

Conflict of interest

No competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal rights participants

This article does not contain any studies involving human participants performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Taher, A.M. A high-performance Sn–Sb–Cu alloy processed by pressure heat treatment: microstructure, thermal and mechanical properties. J Mater Sci: Mater Electron 34, 1684 (2023). https://doi.org/10.1007/s10854-023-11039-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11039-9

Navigation