Skip to main content
Log in

Multiwalled CNTs/copper sulfide hybrids embedded in polyaniline thin films for near-infrared (NIR) photo detecting applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the polyaniline/multiwalled carbon nanotubes–copper sulfide nanoparticles (PANI/MWCNTs–CuS NPs) hybrid composite-based thin films were deposited on top of FTO coated glass substrate for IR (infrared) detection. These hybrid composites were synthesized using in-situ oxidative polymerization of aniline monomer with MWCNTs–CuS NPs mixed in. The samples were prepared using MWCNTs–CuS NPs hybrids with different CuS NPs content. The successful synthesis of these composites was confirmed using Scanning Electron Microscopy (SEM), X-ray powder diffraction (XRD), Raman spectroscopy, and UV–Vis Spectroscopy. The effect of CuS content on the photo-detecting ability of these composite films was investigated. This was done by measuring the ohmic behavior of these composite films. Their J–V behavior in dark as well as under constant exposure to 850 nm infrared light was measured. Increase in CuS content in these composites clearly enhanced their IR light detectability which is attributed to the reduction in composite’s band gap. The ohmic resistance also decreased significantly with increased CuS content (both in dark and under illumination). However, beyond a threshold level of added CuS content, their ohmic resistance suddenly started to rise again along with their decreased photo-detectability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the relevant data supporting this article have been included in the manuscript (and its supplementary information file).

References

  1. S.A. Aboud, A.B. Altemimi, A.R.S. Al-HiIphy, L. Yi-Chen, F. Cacciola, Molecules 24, 1 (2019)

    Article  Google Scholar 

  2. A. Karim, J.Y. Andersson, I.O.P. Conf, Ser. Mater. Sci. Eng. 51, 012001 (2013)

    CAS  Google Scholar 

  3. S.R. Tsai, M.R. Hamblin, J. Photochem. Photobiol. B 170, 197 (2017)

    Article  CAS  Google Scholar 

  4. F.I. Azam, A. Majdi, A. Rani, K. Altaf, C. Xingyu, L. Hao, J. Phys. Conf. Ser. 1693, 012129 (2020)

    Article  Google Scholar 

  5. Z. Cheng, T. Zhao, H. Zeng, Small Sci. 2, 2100051 (2022)

    Article  CAS  Google Scholar 

  6. S.M. Birkmann, P. Ferruit, G. Giardino, L.D. Nielsen, A. García Munoz, S. Kendrew, B.J. Rauscher, T.L. Beck, C. Keyes, J.A. Valenti, P. Jakobsen, B. Dorner, C.A. De Oliveira, S. Arribas, T. Boker, A.J. Bunker, S. Charlot, G. De Marchi, N. Kumari, M. López-Caniego, N. Lutzgendorf, R. Maiolino, E. Manjavacas, A. Marston, S.H. Moseley, N. Prizkal, C. Proffitt, T. Rawle, H.W. Rix, M. Te Plate, E. Sabbi, M. Sirianni, C.J. Willott, P. Zeidler, Astron. Astrophys. 661, A83 (2022)

    Article  CAS  Google Scholar 

  7. W.C.L. King, X. Ning, Z. Jiangbo, L. Guangyong, C. Hongzhi, IEEE Int. Conf. Nanotechnol. 778, 1 (2007)

    Google Scholar 

  8. Y. Luo, J. Zhang, N. Xi, H. Chen, W.C. King Lai, K.M. Carmen, Fung, and T. J. Tarn, IEEE Conf. Nanotechnol. 183, 1 (2008)

    Google Scholar 

  9. B.C. St-Antoine, D. Ménard, R. Martel, Nano Lett. 11, 609 (2011)

    Article  CAS  Google Scholar 

  10. D. Straus, M. Tzolov, T.-F. Kuo, A. Yin, D. Cardimona, A. Daniel, A. Straus, D.A. Cardimona, J.M. Xu, Photon. Space Environ. (2006). https://doi.org/10.1117/12.679518

    Article  Google Scholar 

  11. J.M. Xu, Infrared Phys. Technol. 42, 485 (2001)

    Article  CAS  Google Scholar 

  12. R. Afrin, J. Khaliq, M. Islam, I.H. Gul, A.S. Bhatti, U. Manzoor, Sens. Actuators Phys. 187, 73 (2012)

    Article  CAS  Google Scholar 

  13. F.X. Liang, J.Z. Wang, Z.P. Li, L.B. Luo, Adv. Opt. Mater. 5, 1700081 (2017)

    Article  Google Scholar 

  14. T.F. Zhang, Z.P. Li, J.Z. Wang, W.Y. Kong, G.A. Wu, Y.Z. Zheng, Y.W. Zhao, E.X. Yao, N.X. Zhuang, L.B. Luo, Sci. Rep. 61(6), 1 (2016)

    Google Scholar 

  15. B. Bhattacharyya, A. Sharma, M. Kaur, B.P. Singh, S. Husale, J. Alloys Compd. 851, 156759 (2021)

    Article  CAS  Google Scholar 

  16. Y.H. Tseng, Y. He, L. Que, Analyst. 138, 3053 (2013)

    Article  CAS  Google Scholar 

  17. J. Zhang, N. Xi, H. Chen, K.W.C. Lai, G. Li, U.C. Wejinya, IEEE Trans. Nanotechnol. 8, 245 (2009)

    Article  Google Scholar 

  18. R. Lu, C. Christianson, B. Weintrub, J.Z. Wu, ACS Appl. Mater. Interfaces. 5, 11703 (2013)

    Article  CAS  Google Scholar 

  19. T. Qi, Y. Yu, Y. Hu, K. Li, N. Guo, Y. Jia, Nanomater 12, 1258 (2022)

    Article  CAS  Google Scholar 

  20. Y.H. Tseng, Y. He, S. Lakshmanan, C. Yang, W. Chen, L. Que, Nanotechnology. 23, 455708 (2012)

    Article  Google Scholar 

  21. T.S.M. Thaiyan, A. Kathalingam, H. Moon, Y.D. Kim, J. New. Mater. Electrochem. Syst. 13, 29 (2009)

    Google Scholar 

  22. D. Bang, Y.W. Chang, J. Park, J. Lee, K.H. Yoo, Y.M. Huh, S. Haam, Thin Solid Films. 520, 6818 (2012)

    Article  CAS  Google Scholar 

  23. D. Bang, J. Lee, J. Park, J. Choi, Y.W. Chang, K.H. Yoo, Y.M. Huh, S. Haam, J. Mater. Chem. 22, 3215 (2012)

    Article  CAS  Google Scholar 

  24. Z. Xie, J. Wang, J.T.W. Yeow, ACS Appl. Nano Mater. 5, 7967 (2022)

    Article  CAS  Google Scholar 

  25. S. Yadav, P.K. Bajpai, Nano-Struct. Nano-Objects 10, 151 (2017)

    Article  CAS  Google Scholar 

  26. B. Martínez-Sánchez, D. Cazorla-Amorós, E. Morallón, Polymers (Basel) 12, 1 (2020)

    Google Scholar 

  27. S.G. Bachhav, D.R. Patil, Am. J. Mater. Sci. 1, 1 (2015)

    Google Scholar 

  28. C. Min, P. Nie, W. Tu, C. Shen, X. Chen, H. Song, Tribol. Int. 90, 175 (2015)

    Article  CAS  Google Scholar 

  29. M. Pal, N.R. Mathews, E. Sanchez-Mora, U. Pal, F. Paraguay-Delgado, X. Mathew, J. Nanopart. Res. 17, 1 (2015)

    Article  Google Scholar 

  30. P.O. Agboola, S. Haider, I. Shakir, Ceram. Int. 48, 10136 (2022)

    Article  CAS  Google Scholar 

  31. S. Padmapriya, S. Harinipriya, K. Jaidev, V. Sudha, D. Kumar, S. Pal, Int. J. Energy Res. 42, 1196 (2018)

    Article  CAS  Google Scholar 

  32. A.K. Sharma, A.K. Sharma, R. Sharma, Bull. Mater. Sci. 44, 1 (2021)

    Article  Google Scholar 

  33. B. Pejjai, M. Reddivari, T.R.R. Kotte, Mater. Chem. Phys. 239, 122030 (2020)

    Article  CAS  Google Scholar 

  34. H. Xu, J. Zhang, Y. Chen, H. Lu, J. Zhuang, RSC Adv. 4, 5547 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was conducted at the School of Chemical and Materials Engineering (SCME), National University of Sciences and Technology, Sector H-12, Islamabad. ZH acknowledges the financial and administrative support from the SCME, NUST as well as support of National Centre for Physics for I–V characterization of the samples.

Funding

No external funding was involved in the present research.

Author information

Authors and Affiliations

Authors

Contributions

RZ: Methodology, Writing—original draft, Investigation, Characterization. MTM: review & editing, Characterization. ZH: Conceptualization, supervision, reviewing of manuscript. UL: Supervision, administrative support. SIJ/SH: Financial support, fabrication of electrodes, characterization of samples. ZAU: Characterization and Validation.

Corresponding author

Correspondence to Zakir Hussain.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests and that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

10854_2023_11035_MOESM1_ESM.docx

Band gap data, Raman analysis of MWCNTs for ID/IG ratio calculation, Eds of MWCNTs–CuS NPs hybrids and composition of CuS NPs along their spectra can be found in the attached supplementary file. Supplementary material 1 (DOCX 452.0 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zia, R., Masood, M.T., Hussain, Z. et al. Multiwalled CNTs/copper sulfide hybrids embedded in polyaniline thin films for near-infrared (NIR) photo detecting applications. J Mater Sci: Mater Electron 34, 1622 (2023). https://doi.org/10.1007/s10854-023-11035-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11035-z

Navigation