Skip to main content
Log in

Improving gas sensing performance of BiVO4 nanoplates with {040} growing facets induced by Bi3+

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The micro-morphology and exposed crystal facets of BiVO4 are the crucial factors influencing the gas sensing performance. In this paper, rectangular-plate-shaped BiVO4 with {040} exposed facets were prepared by controlling the concentration of Bi3+ during a facile hydrothermal route. A formation mechanism of the oriented growth nanoplates was proposed according to the morphological evolution of BiVO4 with different molar ratios of Bi to V. The gas-sensing results showed that the sample BVO-1.03 with {040} growing facets obtained at a molar ratio of Bi to V of 1.03:1 in solution presented the maximum sensitivity of 351.1 to 100 ppm ethylene glycol at 220 °C and a wide detection range even to ppb-level towards ethylene glycol was further confirmed. In addition, BVO-1.03 also showed excellent gas-sensing performance (151.1) to 100 ppm n-butanol at 220 °C, which was more than eight times that of the BVO-1. The exposing {040} active facets and the associated oxygen vacancies were demonstrated to be useful for the enhanced response and high recovery rate. Based on the fast recovery rate for ethylene glycol (17.55 s−1) and the high response value at lower working temperature, the BiVO4 nanoplates with {040} exposed facets prepared in this work have potential significance for the environmental monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study are available with the corresponding author, Mingchun Li, on request.

References

  1. J. Seiler, J. Hackmann, F. Lanzerath, A. Bardow, Int. J. Refrig. 77, 39–47 (2017). https://doi.org/10.1016/j.ijrefrig.2017.02.025

    Article  CAS  Google Scholar 

  2. W.W. Tang, X.J. Zhu, Y.F. Li, Friction 10, 688–705 (2021). https://doi.org/10.1007/s40544-020-0483-z

    Article  CAS  Google Scholar 

  3. A. Ketema, A. Worku, J. Chem. (2020). https://doi.org/10.1155/2020/6628404

    Article  Google Scholar 

  4. W. Yang, X. Xiao, B. Fang, H. Deng, J. Alloy Compd. 860, 158410 (2021). https://doi.org/10.1016/j.jallcom.2020.158410

    Article  CAS  Google Scholar 

  5. P. Wang, L. Sui, H. Yu, X. Zhang, X. Cheng, S. Gao, H. Zhao, L. Huo, Y. Xu, H. Wu, Sensor Actuat. B-Chem. 326, 128796 (2021). https://doi.org/10.1016/j.snb.2020.128796

    Article  CAS  Google Scholar 

  6. L. Cheng, Y. He, M. Gong, X. He, Z. Ning, H. Yu, Z. Jiao, J. Alloy Compd. 857, 158205 (2021). https://doi.org/10.1016/j.jallcom.2020.158205

    Article  CAS  Google Scholar 

  7. R. Gomes, R.G. Liteplo, M.E. Meek, J. Environ. Sci. Heal. C. 19, 189–217 (2007). https://doi.org/10.1081/GNC-100103585

    Article  Google Scholar 

  8. W. Guo, Y. Shuai, X. Liu, J. Zhang, J. Wang, K. Mahmoud, Z. El-Bahy, N.M. Mubarak, Sensor Actuat. B-Chem. 354, 131221 (2022). https://doi.org/10.1016/j.snb.2021.131221

    Article  CAS  Google Scholar 

  9. V.D. Baquiran, J.A.M. Bate, M.J.B. Sembrano, J.F. Villaverde, G.V. Magwili, ICCAE. (2020). https://doi.org/10.1145/3384613.3384638

    Article  Google Scholar 

  10. J. Fowles, M. Banton, J. Klapacz, H. Shen, Toxicol. Lett. 278, 66–83 (2017). https://doi.org/10.1016/j.toxlet.2017.06.009

    Article  CAS  Google Scholar 

  11. V.S. Bhati, M. Kumar, R. Banerjee, J. Mater. Chem. C. 9, 8776–8808 (2021). https://doi.org/10.1039/d1tc01857d

    Article  CAS  Google Scholar 

  12. P. Munindra, M.S. Bhargava Reddy, B. Geeta Rani, N. Jayarambabu, P. Saraswathi Kailasa, S.S. Rao, K.V. Rao, J. Mater. Sci. Mater. Electron. 31, 2370–2377 (2020). https://doi.org/10.1007/s10854-019-02770-3

    Article  CAS  Google Scholar 

  13. J.K. Cooper, S. Gul, F.M. Toma, L. Chen, P.A. Glans, J. Guo, J.W. Ager, J. Yano, I.D. Sharp, Chem. Mater. 26, 5365–5373 (2014). https://doi.org/10.1021/cm5025074

    Article  CAS  Google Scholar 

  14. S.U. Xin, C.J. Liu, Y. Liu, Y.H. Yang, X. Liu, S. Chen, Trans. Nonferrous Met. Soc. China 31, 533–544 (2021). https://doi.org/10.1016/S1003-6326(21)65515-2

    Article  Google Scholar 

  15. C. Lia, X.K. Qiao, J. Jian, F. Feng, H.Q. Wang, L.C. Ji, Chem. Eng. J. 375, 121924 (2019). https://doi.org/10.1016/j.cej.2019.121924

    Article  CAS  Google Scholar 

  16. P. Subramanyam, B. Meena, D. Suryakala, C. Subrahmanyam, Sol. Energ. Mat. Sol. C. 232, 111354 (2021). https://doi.org/10.1016/j.solmat.2021.111354

    Article  CAS  Google Scholar 

  17. X.K. Qiao, Y.X. Xu, K. Yang, J.Z. Ma, C. Li, H.Q. Wang, L.C. Ji, Chem. Eng. J. 395, 125144 (2020). https://doi.org/10.1016/j.cej.2020.125144

    Article  CAS  Google Scholar 

  18. S.L. Bai, Q.Q. Li, N. Han, K.W. Zhang, P.G. Tang, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Chen, J. Coll. Interf. Sci. 567, 37–44 (2020). https://doi.org/10.1016/j.jcis.2020.01.104

    Article  CAS  Google Scholar 

  19. S.L. Bai, J.Y. Han, X.X. Fan, J. Guo, R.X. Luo, D.Q. Li, A.F. Chen, New J. Chem. 44, 2402–2407 (2020). https://doi.org/10.1039/C9NJ06198C

    Article  CAS  Google Scholar 

  20. J. Wu, Y. Wang, Z.X. Liu, Y.S. Yan, Z. Zhu, New J. Chem. 44, 13815–13823 (2020). https://doi.org/10.1039/d0nj03080e

    Article  CAS  Google Scholar 

  21. S. Pei, S.Y. Ma, X.L. Xu, O. Almamoun, Y.T. Ma, X.H. Xu, J. Alloy Compd. 859, 158400 (2021). https://doi.org/10.1016/j.jallcom.2020.158400

    Article  CAS  Google Scholar 

  22. S. Heckel, J. Grauer, M. Semmler, T. Gemming, H. Lowen, B. Liebchen, J. Simmchen, Langmuir 36, 12473–12480 (2020). https://doi.org/10.1021/acs.langmuir.0c01568

    Article  CAS  Google Scholar 

  23. S.L. Bai, K.W. Zhang, Y.Y. Zhao, Q.Q. Li, R.X. Luo, D.Q. Li, A.F. Chen, Sensor Actuat. B-Chem. 329, 128912 (2021). https://doi.org/10.1016/j.snb.2020.128912

    Article  CAS  Google Scholar 

  24. S.L. Bai, K. Tian, H. Fu, Y.J. Feng, R.X. Luo, D.Q. Li, A.F. Chen, C.C. Liu, Sensor Actuat. B-Chem. 268, 136–143 (2018). https://doi.org/10.1016/j.snb.2018.03.173

    Article  CAS  Google Scholar 

  25. Y. Zhao, Y. Xie, X. Zhu, S. Yan, S.X. Wang, Chem. Eur. J. 14, 1601–1606 (2008). https://doi.org/10.1002/chem.200701053

    Article  CAS  Google Scholar 

  26. S. Eda, M. Fujishima, H. Tada, Appl. Catal. B-Environ. 125, 288–293 (2012). https://doi.org/10.1016/j.apcatb.2012.05.038

    Article  CAS  Google Scholar 

  27. A. Adenle, D. Ma, D. Qu, W. Chen, S.M. Huang, Cryst. Eng. Comm. 19, 6305–6313 (2017). https://doi.org/10.1039/C7CE01369H

    Article  CAS  Google Scholar 

  28. J. Luo, P. Fu, Y. Qu, Z.D. Lin, W. Zeng, Phys. E 103, 71–75 (2018). https://doi.org/10.1016/j.physe.2018.05.030

    Article  CAS  Google Scholar 

  29. B. Baral, K. Parida, Inorg. Chem. 59, 10328–10342 (2020). https://doi.org/10.1021/acs.inorgchem.0c01465

    Article  CAS  Google Scholar 

  30. Y.C. Miao, J.C. Liu, L.X. Chen, H. Sun, R.K. Zhang, J. Guo, M.F. Shao, Chem. Eng. J. 427, 131011 (2022). https://doi.org/10.1016/j.cej.2021.131011

    Article  CAS  Google Scholar 

  31. J. Chen, D.L. Feng, C. Wang, X.X. Xing, L.L. Du, Z.Y. Zhu, X.H. Huang, D.C. Yang, ACS Sens. 5, 2620–2627 (2020). https://doi.org/10.1021/acssensors.0c01149

    Article  CAS  Google Scholar 

  32. D. Yao, C.W. Dong, Q.M. Bing, Y. Liu, F.D. Qu, M.H. Yang, B.B. Liu, B. Yang, H. Zhang, ACS Appl. Mater. Interfaces 11, 23495–23502 (2019). https://doi.org/10.1021/acsami.9b05626

    Article  CAS  Google Scholar 

  33. X. Li, L.J. Jian, L. Wang, R. Liu, Y. Zhao, J.T. Chen, Y. Li, Opt. Mater. 123, 111824 (2022). https://doi.org/10.1016/j.optmat.2021.111824

    Article  CAS  Google Scholar 

  34. Y.Y. Zhang, Y.P. Guo, H.N. Duan, H. Li, C.Y. Sun, H.Z. Liu, Phys. Chem. Chem. Phys. 16, 24519–24526 (2014). https://doi.org/10.1039/c4cp03795b

    Article  CAS  Google Scholar 

  35. J.Q. Yu, A. Kudo, Chem. Lett. 34, 850–851 (2005). https://doi.org/10.1246/cl.2005.850

    Article  CAS  Google Scholar 

  36. L. Zhang, D.R. Chen, X.L. Jiao, J. Phys. Chem. B. 110, 2668–2673 (2006). https://doi.org/10.1021/jp056367d

    Article  CAS  Google Scholar 

  37. S.M. Thalluri, S. Hernández, S. Bensaid, G. Saracco, N. Russo, Appl. Catal. B-Environ. 180, 630–636 (2016). https://doi.org/10.1016/j.apcatb.2015.07.029

    Article  CAS  Google Scholar 

  38. T. Vo, C. Kao, J. Kuo, C. Chiu, C. Chiang, Appl. Catal. B-Environ. 278, 119303 (2020). https://doi.org/10.1016/j.apcatb.2020.119303

    Article  CAS  Google Scholar 

  39. Y.X. Shi, P.W. Zhai, L.X. Meng, Z.Y. Huang, G.Q. Li, Phys. B. 618, 413174 (2021). https://doi.org/10.1016/j.physb.2021.413174

    Article  CAS  Google Scholar 

  40. M. Mohamed, M. May, M. Kanis, M. Brutzam, R. Uecker, R. Krol, C. Janowitz, M. Mulazzi, Atmos Chem. Phys. 22(8), 5639–5650 (2022). https://doi.org/10.1039/c9ra01092k

    Article  CAS  Google Scholar 

  41. M.Y. Wu, Z.J. Yuan, Y.C. Niu, Y.S. Meng, G.H. He, X.B. Jiang, Chem. Sci. Eng. 22, 5639–5650 (2022). https://doi.org/10.5194/acp-22-5639-2022

    Article  CAS  Google Scholar 

  42. W. Jiang, T. Huang, Y. Zheng, L. Bao, Y. Liu, G. Xu, G. Han, CrystEngComm 41, 6293–6300 (2019). https://doi.org/10.1039/C9CE01170F

    Article  Google Scholar 

  43. S. Tokunaga, H. Kato, A. Kudo, Chem. Mater. 13, 4624–4628 (2001). https://doi.org/10.1021/cm0103390

    Article  CAS  Google Scholar 

  44. P. Tatarko, S. Grasso, A. Kovalcıkova, D. Medved, I. Dlouhy, M.J. Reece, J. Eur. Ceram. Soc. 40, 1111–1118 (2020). https://doi.org/10.1016/j.jeurceramsoc.2019.11.006

    Article  CAS  Google Scholar 

  45. L. Guo, J.Q. Li, N. Lei, Q.Q. Song, Z. Liang, J. Alloy Compd. 771, 914–923 (2019). https://doi.org/10.1016/j.jallcom.2018.09.037

    Article  CAS  Google Scholar 

  46. N. Ekthammathat, A. Phuruangrat, S. Thongtem, T. Thongtem, Russ. J. Phys. Chem. A 92, 1036–1040 (2018). https://doi.org/10.1134/S0036024418050114

    Article  CAS  Google Scholar 

  47. L. Mahlalela, C. Casado, J. Marugán, S. Septien, T. Ndlovu, L. Dlamini, Appl. Nanosci. 92, 1036–1040 (2018). https://doi.org/10.1007/s13204-019-00977-8

    Article  CAS  Google Scholar 

  48. W. Guo, Q. Zhou, J. Zhang, M. Fu, N. Radacsi, Y. Li, Sensor Actuat. B-Chem. 299, 126959 (2019). https://doi.org/10.1016/j.snb.2019.126959

    Article  CAS  Google Scholar 

  49. X.S. Gu, Y.J. Luo, Q. Li, R. Wang, S.Q. Fu, X.L. Lv, Q. He, Y. Zhang, Q.T. Yan, X. Xu, F.Y. Ji, Y. Qiu, Front. Chem. 8, 601983 (2020). https://doi.org/10.3389/fchem.2020.601983

    Article  CAS  Google Scholar 

  50. T. Wang, X. Liu, D. Han, C. Ma, Y. Liu, P.W. Huo, Y.S. Yan, J. Alloy Compd. 785, 460–467 (2019). https://doi.org/10.1016/j.jallcom.2019.01.204

    Article  CAS  Google Scholar 

  51. C. Qin, X.L. Tang, J.F. Chen, H.R. Liao, J.B. Zhong, J.Z. Li, Coll. Surf. A. 617, 126224 (2021). https://doi.org/10.1016/j.colsurfa.2021.126224

    Article  CAS  Google Scholar 

  52. G. Zhang, Y. Meng, B. Xie, Z. Ni, H. Lu, S. Xia, Appl. Catal B-Environ. 296, 120379 (2021). https://doi.org/10.1016/j.apcatb.2021.120379

    Article  CAS  Google Scholar 

  53. S. Bakhtiarnia, S. Sheibani, A. Billard, H. Sun, E. Aubry, J. Alloy Compd. 879, 160463 (2021). https://doi.org/10.1016/j.jallcom.2021.160463

    Article  CAS  Google Scholar 

  54. W. He, Y. Sun, G. Jiang, Y. Li, X. Zhang, Y. Zhang, Y. Zhou, F. Dong, Appl. Catal. B 239, 619–627 (2018). https://doi.org/10.1016/j.apcatb.2018.08.064

    Article  CAS  Google Scholar 

  55. V.R. Shinde, T.P. Gujar, C.D. Lokhande, Sensor Actuat B-Chem 123, 701–706 (2007). https://doi.org/10.1016/j.snb.2006.10.003

    Article  CAS  Google Scholar 

  56. S.L. Bai, L.X. Sun, J.H. Sun, J.Y. Han, K.W. Zhang, Q.Q. Li, R.X. Luo, D.Q. Li, A.F. Chen, J. Colloid Interf. Sci. 587, 183–191 (2021). https://doi.org/10.1016/j.jcis.2020.10.113

    Article  CAS  Google Scholar 

  57. T. Han, S.Y. Ma, X.L. Xu, X.H. Xu, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, Mater. Lett. 268, 127575 (2020). https://doi.org/10.1016/j.matlet.2020.127575

    Article  CAS  Google Scholar 

  58. X.H. Xu, S.Y. Ma, X.L. Xu, T. Han, S.T. Pei, Y. Tie, P.F. Cao, W.W. Liu, B.J. Wang, R. Zhang, J.L. Zhang, Mater. Lett. 273, 127967 (2020). https://doi.org/10.1016/j.matlet.2020.127967

    Article  CAS  Google Scholar 

  59. P.F. Cao, S.Y. Ma, X.L. Xu, Vacuum 181, 109748 (2020). https://doi.org/10.1016/j.vacuum.2020.109748

    Article  CAS  Google Scholar 

  60. T. Han, S.Y. Ma, X.H. Xu, P.F. Cao, W.W. Liu, X.L. Xu, S.T. Pei, J. Alloy Compd. 876, 160211 (2021). https://doi.org/10.1016/j.jallcom.2021.160211

    Article  CAS  Google Scholar 

  61. J.J. Ding, H.F. Dai, L. Ren, H.X. Chen, Y.X. Jin, H.W. Hu, B. Xiao, Sensor. Actuat. B-Chem. 372, 132655 (2022). https://doi.org/10.1016/j.snb.2022.132655

    Article  CAS  Google Scholar 

  62. W.W. Guo, L.J. Jian, X.M. Wang, W. Zeng, Sensor. Actuat. B-Chem. 357, 131396 (2022). https://doi.org/10.1016/j.snb.2022.131396

    Article  CAS  Google Scholar 

  63. Z.D. Lin, M.Y. Xu, P. Fu, Q.R. Deng, Sensor Actuat. B-Chem. 254, 755–762 (2018). https://doi.org/10.1016/j.snb.2017.07.101

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (51874200), Liaoning Bai Qian Wan Talents Program and Liaoning Revitalization Talents Program (XLYC1907080 and XLYC2008014).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by ML, XY, CS and JJ. The funding support for the experiment was provided by ML, YW and LL. The first draft of the manuscript was written by XY and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mingchun Li or Yusheng Wu.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Yang, X., Shen, C. et al. Improving gas sensing performance of BiVO4 nanoplates with {040} growing facets induced by Bi3+. J Mater Sci: Mater Electron 34, 1618 (2023). https://doi.org/10.1007/s10854-023-11028-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11028-y

Navigation