Skip to main content
Log in

2-Chloro-(n-alkylamino)pyridine-1,4-naphthoquinones as photosensitizers in TiO2 and ZnO-based DSSCs

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

2-Chloro-(n-alkylamino)pyridine-1,4-naphthoquinones as photosensitizers, viz. 2-chloro-3[(pyridine-2-ylmethyl)amino]naphthalene-1,4-dione (2AMP), 2-chloro-3[(pyridine-3-ylmethyl)amino]naphthalene-1,4-dione (3AMP), and 2-chloro-3[(2-pyridine-2-ylethyl)amino)]aphthalene-1,4-dione (2AEP), are synthesized and studied for TiO2 and ZnO-based dye-sensitized solar cells (DSSCs). The FE-SEM, powder XRD, UV–Visible spectroscopy, FT-IR, and J–V characteristics were used to investigate the morphology, crystallinity, and optical and electrochemical properties of the photosensitizer-adsorbed TiO2 and ZnO photoelectrodes. Optical properties of photoelectrodes are noticed in the visible spectrum and are assigned to n→π* charge transfer transition. The PXRD pattern confirms the hexagonal Wurtzite crystal structure of ZnO and the anatase phase of TiO2 photoelectrodes. The TiO2/3AMP photoelectrode-based DSSCs exhibited higher efficiency (η) than other photoelectrodes (TiO2/2AMP, TiO2/2AEP, ZnO/2AMP, ZnO/3AMP, and ZnO/2AEP) because of its better photosensitizer adsorption and rapid electron injection. The photosensitizers are actively breaking down the energy barrier and reducing the electron recombination losses. The current work will provide a new method for fabricating the DSSCs that rely on D–π–A motif-based 2-Chloro-(n-alkylamino)pyridine-1,4-naphthoquinones photosensitizers and morphology-dependent photoelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data from the results of this study are provided in the article.

References

  1. I. Dincer, C. Acar, A review on clean energy solutions for better sustainability. Int. J. Energy Res. 39, 585–606 (2015). https://doi.org/10.1002/er.3329

    Article  Google Scholar 

  2. S. Mozaffari, M.R. Nateghi, M.B. Zarandi, An overview of the challenges in the commercialization of dye sensitized solar cells. Renew. Sustain. Energy Rev. 71, 675–686 (2017). https://doi.org/10.1016/j.rser.2016.12.096

    Article  CAS  Google Scholar 

  3. P. Chelvanathan, S.A. Shahahmadi, F. Arith, K. Sobayel, M. Aktharuzzaman, K. Sopian, F.H. Alharbi, N. Tabet, N. Amin, Effects of RF magnetron sputtering deposition process parameters on the properties of molybdenum thin films. Thin Solid Films. 638, 213–219 (2017). https://doi.org/10.1016/j.tsf.2017.07.057

    Article  CAS  Google Scholar 

  4. A. Nizamuddin, F. Arith, I.J. Rong, M. Zaimi, A.S. Rahimi, S. Saat, Investigation of copper(I)thiocyanate (CuSCN) as a hole transporting layer for perovskite solar cells application. J. Adv. Res. Fluid Mech. Therm. Sci. 78, 153–159 (2021). https://doi.org/10.37934/arfmts.78.2.153159

    Article  Google Scholar 

  5. N.S. Noorasid, F. Arith, A.N. Mustafa, M.A. Aam, S. Mahalingam, P. Chelvanathan, N. Amin, Current advancement of flexible dye sensitized solar cell: a review. Optik Int. J. Light Electron Opt. 254, 168089 (2022). https://doi.org/10.1016/j.ijleo.2021.168089

    Article  CAS  Google Scholar 

  6. N.S. Noorasid, F. Arith, A.N.M. Mustafa, S.H. M.Suhaimy, A.S. Mohd Shah, M.A. Azam, Numerical analysis of ultrathin TiO2 photoanode layer of dye sensitized solar cell by using SCAPS-1D, In: Proceedings of the IEEE Regional Symposium on Micro and Nanoelectronics 96–99 (2021) https://doi.org/10.1109/RSM52397.2021.9511600

  7. O.V. Aliyaselvam, F. Arith, M.K. Nor, A.N.M. Mustafa, O. Ahmed, Solution processed of solid state HTL of CuSCN layer at low annealing temperature for emerging solar cell. Int. J. Renew. Energy Res. 11, 869–878 (2021). https://dorl.net/dor/20.1001.1.13090127.2021.11.2.35.4

  8. K. Sharma, V. Sharma, S.S. Sharma, Dye-sensitized solar cells: fundamentals and current status. Nanoscale Res. Lett. 13, 381 (2018). https://doi.org/10.1186/s11671-018-2760-6

    Article  CAS  Google Scholar 

  9. C. Cavallo, F. Di Pascasio, A. Latini, M. Bonomo, D. Dini, Nanostructured semiconductor materials for dye-sensitized solar cells. J. Nanomater. 2017, 5323164 (2017). https://doi.org/10.1155/2017/5323164

    Article  CAS  Google Scholar 

  10. L. Zhang, X. Yang, W. Wang, G.G. Gurzadyan, J. Li, X. Li, J. An, Z. Yu, H. Wang, B. Cai, A. Hagfeldt, Sun,13.6% efficient organic dye-sensitized solar cells by minimizing energy losses of the excited state. ACS Energy Lett. 4, 943–951 (2019). https://doi.org/10.1021/acsenergylett.9b00141

    Article  CAS  Google Scholar 

  11. H.J. Snaith, Estimating the maximum attainable efficiency in dye-sensitized solar cells. Adv. Funct. Mater. 20, 13–19 (2010). https://doi.org/10.1002/adfm.200901476

    Article  CAS  Google Scholar 

  12. B.C. O’Regan, J.R. Durrant, Kinetic and energetic paradigms for dye-sensitized solar cells: moving from the ideal to the real. Acc. Chem. Res. 42, 1799–1808 (2009). https://doi.org/10.1021/ar900145z

    Article  CAS  Google Scholar 

  13. F. Fabregat-Santiago, G. Garcia-Belmonte, I. Mora-Sero, J. Bisquert, Characterization of nanostructured hybrid and organic solar cells by impedance spectroscopy. Phys. Chem. Chem. Phys. 13, 9083–9118 (2011). https://doi.org/10.1039/C0CP02249G

    Article  CAS  Google Scholar 

  14. T. Stergiopoulos, P. Falaras, Minimizing energy losses in dye-sensitized solar cells using coordination compounds as alternative Redox Mediators coupled with Appropriate Organic Dyes. Adv. Energy Mater. 2, 616–627 (2012). https://doi.org/10.1002/aenm.201100781

    Article  CAS  Google Scholar 

  15. J.N. Clifford, E. Martínez-Ferrero, E. Palomares, Dye mediated charge recombination dynamics in nanocrystalline TiO2 dye sensitized solar cells. J. Mater. Chem. 22, 12415–12422 (2012). https://doi.org/10.1039/C2JM16107A

    Article  CAS  Google Scholar 

  16. M.J. Griffith, K. Sunahara, P. Wagner, K. Wagner, G.G. Wallace, D.L. Officer, A. Furube, R. Katoh, S. Mori, A.J. Mozer, Porphyrins for dye-sensitized solar cells: new insights into efficiency-determining electron transfer steps. Chem. Commun. 48, 4145–4162 (2012). https://doi.org/10.1039/C2CC30677H

    Article  CAS  Google Scholar 

  17. A. Kunzmann, S.E. Valero, A. Sepúlveda, M. Rico-Santacruz, E.R. Lalinde, J. Berenguer, J.M. García-Martínez, D. Guldi, E.D. Serrano, R. Costa, Hybrid dye-titania nanoparticles for superior low-temperature dye-sensitized solar cells. Adv. Energy Mater. 8, 1702583 (2018). https://doi.org/10.1002/aenm.201702583

    Article  CAS  Google Scholar 

  18. E.M. Elsayed, A.E. Shalan, M.M. Rashad, Preparation of ZnO nanoparticles using electrodeposition and co-precipitation techniques for dye-sensitized solar cells applications. J. Mater. Sci. Mater. Electron. 25, 3412–3419 (2014). https://doi.org/10.1007/s10854-014-2033-9

    Article  CAS  Google Scholar 

  19. S. Haid, M. Marszalek, A. Mishra, M. Wielopolski, J. Teuscher, J.E. Moser, R. Humphry-Baker, S.M. Zakeeruddin, M. Grätzel, P. Bäuerle, Significant improvement of dye-sensitized solar cells performance by small structural modification in π-Conjugated donor-acceptor dyes. Adv. Funct. Mater. 22, 1291–1302 (2012). https://doi.org/10.1002/adfm.201102519

    Article  CAS  Google Scholar 

  20. Y. Hong, J.-Y. Liao, D. Cao, X. Zang, D.-B. Kuang, L. Wang, H. Meier, C.-Y. Su, Organic dye bearing asymmetric double donor–π–acceptor chains for dye-sensitized solar cells. J. Org. Chem. 76, 8015–8021 (2011). https://doi.org/10.1021/jo201057b

    Article  CAS  Google Scholar 

  21. Y. Gao, X. Li, Y. Hu, Y. Fan, J. Yuan, N. Robertson, J. Hua, S.R. Marder, Effect of an auxiliary acceptor on D–A–π–A sensitizers for highly efficient and stable dye-sensitized solar cells. J. Mater. Chem. A 4, 12865–12877 (2016). https://doi.org/10.1039/C6TA05588E

    Article  CAS  Google Scholar 

  22. S.A. Mahadik, H.M. Pathan, S. Salunke-Gawali, R.J. Butcher, Aminonaphthoquinones as photosensitizers for mesoporous ZnO based dye-sensitized solar cells. J. Alloy Compd. 845, 156279 (2020). https://doi.org/10.1016/j.jallcom.2020.156279

    Article  CAS  Google Scholar 

  23. L. López, E. Leyva, García de la Cruz, Las Naftoquinonas: Más Que Pigmentos Naturales. Rev. Mex Ciencias Farm. 42, 311–346 (2011)

    Google Scholar 

  24. L.I. López López, S.D. Nery Flores, S.Y. Silva Belmares, A. Sáenz Galindo, Naphthoquinones: biological properties and synthesis of lawsone and derivatives—A structured review. Vitae 21, 248–258 (2014)

    Article  Google Scholar 

  25. A.P. Ware, A. Patil, S. Khomane, T. Weyhermuller, S.S. Pingale, S. Salunke-Gawali, Naphthoquinone based chemosensor 2-(2’-aminomethylpyridine)-3-chloro-1,4-naphthoquinone for metal ions: single crystal x-ray-crystal structure, experimental and TD-DFT study. J. Mol. Struct 1093, 39–48 (2015). https://doi.org/10.1016/j.molstruc.2015.03.016

    Article  CAS  Google Scholar 

  26. A. Patil, A.P. Ware, S. Bhand, D. Chakrovarty, R. Gonnade, S.S. Pingale, S. Salunke-Gawali, Naphthoquinone based chemosensor 2-(2’-aminoethylpyridine)-3-chloro-1,4-naphthoquinone: detection of metal ions, x-ray-crystal structures and DFT studies. J. Mol. Struct 1114, 132–143 (2016). https://doi.org/10.1016/j.molstruc.2016.02.065

    Article  CAS  Google Scholar 

  27. S. Madhupriya, K.P. Elango, Spectrophotometric and spectrofluorimetric studies on the selective sensing of fluoride ions by Co(II) and ni(II) complexes of naphthoquinone derivative possessing enhanced H-bonding property. Spectrochim Acta, Part A 97, 429–434 (2012). https://doi.org/10.1016/j.saa.2012.06.020

    Article  CAS  Google Scholar 

  28. S. Madhupriya, K.P. Elango, Highly selective colorimetric sensing of Cu(II) ions in aqueous solution via modulation of intramolecular charge transfer transition of aminonaphthoquinone chemosensor. Spectrochim Acta, Part A 97, 100–104 (2012). https://doi.org/10.1016/j.saa.2012.05.044

    Article  CAS  Google Scholar 

  29. D.R. Burfield, R.H. Smithers, Desiccant efficiency in solvent and reagent drying. 7. Alcohols. J. Org. Chem. 48, 2420–2422 (1983). https://doi.org/10.1021/jo00162a026

    Article  CAS  Google Scholar 

  30. D.D. Perrin, W. Armarego, D.R. Perrin, Purification of laboratory chemicals. Pergamon Press, London, p. 260 (1988)

  31. S.S. Khadtare, A.P. Ware, S. Salunke-Gawali, S.R. Jadkar, S.S. Pingale, H.M. Pathan, Dye sensitized solar cell with lawsone dye using a ZnO photoanode: experimental and TD-DFT study. RSC Adv. 5, 17647–17652 (2015). https://doi.org/10.1039/C4RA14620D

    Article  CAS  Google Scholar 

  32. S.S. Khadtare, S.R. Jadkar, S. Salunke-Gawali, H.M. Pathan, Lawsone sensitized ZnO photoelectrodes for dye sensitized solar cells. J. Nano Res. 24, 140–145 (2013). https://doi.org/10.4028/www.scientific.net/JNanoR.24.140

    Article  CAS  Google Scholar 

  33. S.A. Mahadik, A. Patil, H.M. Pathan, S. Salunke-Gawali, R.J. Butcher, Thionaphthoquinones as photosensitizers for TiO2 nanorods and ZnO nanograin based dye-sensitized solar cells: effect of nanostructures on charge transport and photovoltaic performance. Eng. Sci. 14, 46–58 (2021). https://doi.org/10.30919/es8d1160

    Article  CAS  Google Scholar 

  34. S.B. Jambure, G.S. Gund, D.P. Dubal, S.S. Shinde, C.D. Lokhande, Cost effective facile synthesis of TiO2 nanograins for flexible DSSC application using Rose Bengal Dye. Electron. Mater. Lett. 10, 943–950 (2014). https://doi.org/10.1007/s13391-014-3200-0

    Article  CAS  Google Scholar 

  35. S.S. Sahoo, S. Salunke-Gawali, V.S. Kadam, H.M. Pathan, Canna lily red and yellow flower extracts: a new power source to produce photovoltage through dye-sensitized solar cells. Energy Fuels 34, 9674–9682 (2020). https://doi.org/10.1021/acs.energyfuels.0c01482

    Article  CAS  Google Scholar 

  36. N.I. Beedri, V.B. Mokashi, S.A. Mahadik, H.M. Pathan, S. Salunke-Gawali, Naphthoquinoneoxime-sensitized titanium dioxide photoanodes: photoelectrochemical properties. ACS Omega 7, 41519–41530 (2022). https://doi.org/10.1021/acsomega.2c05334

    Article  CAS  Google Scholar 

  37. S.B. Vinayak, V. Balasubramani, M. Shkir, M.A. Manthrammel, G. Sreedevi, Enhancing the performance of TiO2 based NDSSC using dye extracted from Cladophora Columbiana, Ludwigiarepens and mixed sensitizer. Opt. Mater. 133, 112968 (2022). https://doi.org/10.1016/j.optmat.2022.112968

    Article  CAS  Google Scholar 

  38. B.-Q. Liu, X.-P. Zhao, W. Luo, The synergistic effect of two photosynthetic pigments in dye-sensitized mesoporous TiO2 solar cells. Dyes Pigm. 76, 327–331 (2008). https://doi.org/10.1016/j.dyepig.2006.09.004

    Article  CAS  Google Scholar 

  39. A.A. Adeniyi, T.L. Ngake, J. Conradie, Cyclic voltammetric study of 2-Hydroxybenzophenone (HBP) derivatives and the corrspondent change in the orbital energy levels in different solvents. Electroanalysis 32, 2659–2668 (2020). https://doi.org/10.1002/elan.202060163

    Article  CAS  Google Scholar 

  40. K. Tennakone, G.K.R. Senadeera, D.B.R.A. De Silva, I.R.M. Kottegoda, Highly stable dye-sensitized solid-state solar cell with the semiconductor 4CuBr 3S(C4H9)2 as the hole collector. Appl. Phys. Lett. 77, 2367 (2000). https://doi.org/10.1063/1.1312858

    Article  CAS  Google Scholar 

  41. V. Rondán-Gómez, I.M. De Los Santos, D. Seuret-Jiménez, F. Ayala-Mató, A. Zamudio-Lara, T. Robles-Bonilla, M. Courel, Recent advances in dye-sensitized solar cells. Appl. Phys. A 125, 836 (2019). https://doi.org/10.1007/s00339-019-3116-5

    Article  CAS  Google Scholar 

  42. M. Urbani, M. Grätzel, M.K. Nazeeruddin, T. Torres, Meso-Substituted porphyrins for dye-sensitized solar cells. Chem. Rev. 114, 12330–12396 (2014). https://doi.org/10.1021/cr5001964

    Article  CAS  Google Scholar 

  43. S. Qu, C. Qin, A. Islam, Y. Wu, W. Zhu, J. Hua, H. Tian, L. Han, A novel D–A-π-A organic sensitizer containing a diketopyrrolopyrrole unit with a branched alkyl chain for highly efficient and stable dye-sensitized solar cells. Chem. Commun. 48, 6972–6974 (2012). https://doi.org/10.1039/C2CC31998E

    Article  CAS  Google Scholar 

  44. S.M. Feldt, E.A. Gibson, E. Gabrielsson, L. Sun, G. Boschloo, A. Hagfeldt, Design of organic dyes and cobalt polypyridine redox mediators for high-efficiency dye-sensitized solar cells. J. Am. Chem. Soc. 132, 16714–16724 (2010). https://doi.org/10.1021/ja1088869

    Article  CAS  Google Scholar 

  45. M. Liang, J. Chen, Arylamine organic dyes for dye-sensitized solar cells. Chem. Soc. Rev. 42, 3453–3488 (2013). https://doi.org/10.1039/C3CS35372A

    Article  CAS  Google Scholar 

  46. L.L. Li, E.W.G. Diau, Porphyrin-sensitized solar cells. Chem. Soc. Rev. 42, 291–304 (2013). https://doi.org/10.1039/C2CS35257E

    Article  CAS  Google Scholar 

  47. N.I. Beedri, P.K. Baviskar, M.A. Mahadik, S.R. Jadkar, J.S. Jang, H.M. Pathan, Efficiency enhancement for cocktail dye sensitized Nb2O5 photoanode towards dye sensitized solar cell. Eng. Sci. 8, 76–82 (2019). https://doi.org/10.1021/jp203296y

    Article  CAS  Google Scholar 

  48. S. Majumder, P.K. Baviskar, B.R. Sankapal, Light-induced electrochemical performance of 3D-CdS nanonetwork: effect of annealing. Electrochim. Acta 222, 100–107 (2016). https://doi.org/10.1016/j.electacta.2016.10.147

    Article  CAS  Google Scholar 

  49. J. Yoon, M. Jin, M. Lee, Laser-induced control of TiO2 porosity for enhanced photovoltaic behavior. Adv. Mater. 23, 3974–3978 (2011). https://doi.org/10.1002/adma.201101837

    Article  CAS  Google Scholar 

  50. Y. Li, Q. Tang, L. Yu, X. Yan, L. Dong, Cost-effective platinum alloy counter electrodes for liquid-junction dye-sensitized solar cells. J. Power Sources. 305, 217–224 (2016). https://doi.org/10.1016/j.jpowsour.2015.11.063

    Article  CAS  Google Scholar 

  51. K.D. Seo, B.S. You, I.T. Choi, M.J. Ju, M. You, H.S. Kang, H.K. Kim, Dual-channel anchorable organic dyes with well-defined structures for highly efficient dye-sensitized solar cells. J. Mater. Chem. A 1, 9947–9953 (2013). https://doi.org/10.1039/C3TA11832K

    Article  CAS  Google Scholar 

  52. M.J. Jeng, Y.L. Wung, L.B. Chang, L. Chow, Particle size effects of TiO2 Layers on the solar efficiency of dye-sensitized solar cells. Int. J. Photoenergy 2013, 563897 (2013). https://doi.org/10.1155/2013/563897

  53. M. Adachi, M. Sakamoto, J. Jiu, Y. Ogata, S. Isoda, Determination of parameters of electron transport in dye-sensitized solar cells using electrochemical impedance spectroscopy. J. Phys. Chem. B 110, 13872–13880 (2006). https://doi.org/10.1021/jp061693u

    Article  CAS  Google Scholar 

  54. W.C. Chang, C.H. Lee, W.C. Yu, C. Lin, Optimization of dye adsorption time and film thickness for efficient ZnO dye-sensitized solar cells with high at-rest stability. Nanoscale Res. Lett. 7, 688 (2012). https://doi.org/10.1186/1556-276X-7-688

    Article  CAS  Google Scholar 

  55. H.K. Dunn, P.O. Westin, D.R. Sta, L.M. Peter, A.B. Walker, G. Boschloo, A. Hagfeldt, Determination of the electron diffusion length in dye-sensitized solar cells by substrate contact patterning. J. Phys. Chem. C 115, 13932–13937 (2011). https://doi.org/10.1021/jp203296y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SAM is thankful to Chhatrapati Shahu Maharaj Research, Training and Human Development Institute Pune, India, for financial support vide Chhatrapati Shahu Maharaj Research Fellowship-2020 (CSMNRF-2020).

Author information

Authors and Affiliations

Authors

Contributions

SAM participated in the conceptualization, methodology, data curation, and writing of the original draft. SSG participated in the conceptualization, writing, reviewing, and editing of the manuscript, data curation, and supervision.

Corresponding author

Correspondence to Sunita Salunke-Gawali.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 56.1 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahadik, S.A., Salunke-Gawali, S. 2-Chloro-(n-alkylamino)pyridine-1,4-naphthoquinones as photosensitizers in TiO2 and ZnO-based DSSCs. J Mater Sci: Mater Electron 34, 1609 (2023). https://doi.org/10.1007/s10854-023-11020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11020-6

Navigation