Skip to main content

Advertisement

Log in

Superoxide (O2) radical species driven type II TiO2/g-C3N4 heterojunction photocatalyst for RhB dye degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The photocatalysts possess prime importance from sustainable environment view point since they decompose detrimental substances. In this work, we report a type II heterojunction of titanium dioxide/graphitic carbon nitride (TiO2/g-C3N4) photocatalysts for degradation of rhodamine B (RhB) dye under UV–Visible light irradiation. The pristine TiO2 and g-C3N4 materials are prepared by hydrothermal and thermolysis methods, respectively. The heterojunction photocatalysts, i.e. TiO2/g-C3N4 are synthesized with different weight% (wt%) loadings of TiO2 over g-C3N4 by hydrothermal method. The physico-chemical properties of all photocatalysts are analysed by different characterization techniques. Compared with the pristine phase of TiO2 and g-C3N4, the heterojunction photocatalysts showed improved efficiency due to effective charge transfer between TiO2 with g-C3N4 and enhanced visible light harvesting. Owing to effective superlative light absorption and generation of the large number of electron–hole pairs, suppression of recombination centres, formation of active species (specially O2), etc., 5 wt% loaded TiO2/g-C3N4 photocatalyst demonstrated superior performance. Moreover, 5 wt% loaded TiO2/g-C3N4 photocatalyst exhibited recyclability with high activity (92% after 4 cycles) and thus, we believe it possesses potential for use in industrial water treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article and/or its supplementary materials.

References

  1. J.-R.L. Chong-Chen, X.-L. Wang, Y.-Q. Lv, Zhang and Guangsheng Guo, photocatalytic organic pollutants degradation in metal–organic frameworks. Energy Environ. Sci. 7, 2831–2867 (2014)

    Article  Google Scholar 

  2. W. Liu, S. Chang, D. Liu, F. Wen, Three-dimensional ordered macroporous materials with g-C3N4 and TiO2 as pore walls for efficient photocatalytic hydrogen evolution. Colloids Surf. A 609, 125681 (2021)

    Article  CAS  Google Scholar 

  3. A. Alaghmandfard, K. Ghandi, A comprehensive review of graphitic carbon nitride (g-C3N4)-metal oxide-based nanocomposites potential for photocatalysis and sensing. Nanomaterials 12, 294 (2022)

    Article  CAS  Google Scholar 

  4. J.A. Khan, M. Sayed, S. Khan, N.S. Shah, D.D. Dionysiou, G. Boczkaj, Advanced oxidation processes for the treatment of contaminants of emerging concern, in Contaminants of Emerging Concern in Water and Wastewater (Butterworth-Heinemann, Oxford, 2020), pp. 299–365

    Chapter  Google Scholar 

  5. I. Chakraborty, Z. Guo, B. Anirban, P. Sahoo, Physical modifications and algorithmic predictions behind further advancing 2D Water Splitting Photocatalyst: an overview. Eng. Sci. 20, 34–46 (2022)

    CAS  Google Scholar 

  6. M.M. Khan, S.F. Adil, A. Al-Mayouf, Metal oxides as photocatalysts. J. Saudi Chem. Soc. 19, 462–464 (2015)

    Article  Google Scholar 

  7. Z. Cheng, W. Qi, C.H. Pang, T. Thomas, T. Wu, S. Liu, M. Yang, Recent advances in transition metal nitride-based materials for photocatalytic applications. Adv. Funct. Mater. 31, 2100553 (2021)

    Article  CAS  Google Scholar 

  8. S. Wu, Z. Wu, X.L. Wang, X. Wang, R. Zhou, D.S. Li, T. Wu, Two new layered metal chalcogenide frameworks as photocatalysts for highly efficient and selective dye degradation. Dalton Trans. 49, 13276–13281 (2020)

    Article  CAS  Google Scholar 

  9. F. Lu, D. Astruc, Nanocatalysts and other nanomaterials for water remediation from organic pollutants. Coordin. Chem. Rev. 408, 213180 (2020)

    Article  CAS  Google Scholar 

  10. J. Theerthagiri, S.J. Lee, K. Karuppasamy, S. Arulmani, S. Veeralakshmi, M. Ashokkumar, M.Y. Choi, Application of advanced materials in sonophotocatalytic processes for the remediation of environmental pollutants. J. Hazard. Mater. 412, 125245 (2021)

    Article  CAS  Google Scholar 

  11. Z. Sun, C. Li, G. Yao, S. Zheng, In situ generated g-C3N4/TiO2 hybrid over diatomite supports for enhanced photodegradation of dye pollutants. Mater. Design. 94, 403–409 (2016)

    Article  CAS  Google Scholar 

  12. D. Monga, S. Basu, Enhanced photocatalytic degradation of industrial dye by g-C3N4/TiO2 nanocomposite: role of shape of TiO2. Adv. Powder Technol. 30, 1089–1098 (2019)

    Article  CAS  Google Scholar 

  13. S.B. Kokane, S.D. Sartale, K.G. Girija, R. Jagannath, Sasikala, Photocatalytic performance of pd decorated TiO2–CdO composite: role of in situ formed CdS in the photocatalytic activity. Int. J. Hydrog. Energy 40, 13431–13442 (2015)

    Article  CAS  Google Scholar 

  14. J. Low, J. Yu, M. Jaroniec, S. Wageh, A.A. Al-Ghamdi, Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017)

    Article  Google Scholar 

  15. H. Xu, J. Ju, W. Li, J. Zhang, J. Wang, B. Cao, Superior triethylamine-sensing properties based on TiO2/SnO2 n–n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B 228, 634–642 (2016)

    Article  CAS  Google Scholar 

  16. M. Humayun, F. Raziq, A. Khan, W. Luo, Modification strategies of TiO2 for potential applications in photocatalysis: a critical review. Green Chem. Lett. Rev. 11, 86–102 (2018)

    Article  CAS  Google Scholar 

  17. K. Qi, B. Cheng, J. Yu, W. Ho, A review on TiO2 -based Z-scheme photocatalysts. Chin. J. Catal. 38, 1936–1955 (2017)

    Article  CAS  Google Scholar 

  18. W. Al Zoubi, A.A. Salih Al-Hamdani, B. Sunghun, Y.G. Ko, A review on TiO2-based composites for superior photocatalytic activity. Rev. Inorg. Chem. 41, 213–222 (2021)

    Article  CAS  Google Scholar 

  19. Y.J. Ren, D.Q. Zeng, W.J. Ong, Interfacial engineering of graphitic carbon nitride (g-C3N4)-based metal sulfide heterojunction photocatalysts for energy conversion: a review. Chin. J. Catal. 40, 289–319 (2019)

    Article  CAS  Google Scholar 

  20. M. Ismael, A review on graphitic carbon nitride (g-C3N4) based nanocomposites: synthesis, categories, and their application in photocatalysis. J. Alloys Compd. 846, 156446 (2020)

    Article  CAS  Google Scholar 

  21. H. Yan, H. Yang, TiO2–g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J. Alloys Compd. 509, L26–L29 (2011)

    Article  CAS  Google Scholar 

  22. S. Zhao, S. Chen, H. Yu, X. Quan, g-C3N4/TiO2 hybrid photocatalyst with wide absorption wavelength range and effective photogenerated charge separation. Sep. Purif. Technol. 99, 50–54 (2012)

    Article  CAS  Google Scholar 

  23. Y. Wang, J. Yu, W. Peng, J. Tian, C. Yang, Novel multilayer TiO2 heterojunction decorated by low g-C3N4 content and its enhanced photocatalytic activity under UV, visible and solar light irradiation. Sci. Rep. 9, 5932 (2019)

    Article  Google Scholar 

  24. S.B. Kokane, R. Sasikala, D.M. Phase, S.D. Sartale, In2S3 nanoparticles dispersed on g-C3N4 nanosheets: role of heterojunctions in photoinduced charge transfer and photoelectrochemical and photocatalytic performance. J. Mater. Sci. 52, 7077–7090 (2017)

    Article  CAS  Google Scholar 

  25. S.B. Kokane, S.D. Sartale, C.A. Betty, R. Sasikala, Pd–TiO2–SrIn2O4 heterojunction photocatalyst: enhanced photocatalytic activity for hydrogen generation and degradation of methylene blue. RSC Adv. 4, 55539–55547 (2014)

    Article  CAS  Google Scholar 

  26. M. Sharma, S. Vaidya, A.K. Ganguli, Enhanced photocatalytic activity of g-C3N4-TiO2 nanocomposites for degradation of rhodamine B dye. J. Photochem. Photobiol. A 335, 287–293 (2017)

    Article  CAS  Google Scholar 

  27. S. Mugundan, P. Praveen, S. Sridhar, S. Prabu, K. Lawrence Mary, M. Ubaidullah, S.F. Shaikh, S. Kanagesan, Sol-gel synthesized barium doped TiO2 nanoparticles for solar photocatalytic application. Inorg. Chem. Commun. 139, 109340 (2022)

    Article  CAS  Google Scholar 

  28. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125 (2015)

    Article  CAS  Google Scholar 

  29. M.A. Desai, A. Kulkarni, G. Gund, S.D. Sartale, SILAR grown K+ and na+ ions preinserted MnO2 nanostructures for supercapacitor applications: a comparative study. Energy Fuels 35, 4577–4586 (2021)

    Article  CAS  Google Scholar 

  30. M.A. Desai, S.D. Sartale, Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst. Growth. Des. 15, 4813–4820 (2015)

    Article  CAS  Google Scholar 

  31. P. Gündoğmuş, J. Park, A. Öztürk, Preparation and photocatalytic activity of g-C3N4/TiO2 heterojunctions under solar light illumination. Ceram. Int. 46, 21431–21438 (2020)

    Article  Google Scholar 

  32. S. Das, H. Mahalingam, Dye degradation studies using immobilized pristine and waste polystyrene-TiO2/rGO/g-C3N4 nanocomposite photocatalytic film in a novel airlift reactor under solar light. J. Environ. Chem. Eng. 7, 103289 (2019)

    Article  CAS  Google Scholar 

  33. Y. Xia, L. Xu, J. Peng, J. Han, S. Guo, L. Zhang, Z. Han, S. Komarneni, TiO2@g-C3N4 core/shell spheres with uniform mesoporous structures for high performance visible-light photocatalytic application. Ceram. Int. 45, 18844–18851 (2019)

    Article  CAS  Google Scholar 

  34. M.A. Hanif, J. Akter, Y.S. Kim, H.G. Kim, J.R. Hahn, L.K. Kwac, Highly efficient and sustainable ZnO/CuO/g-C3N4 photocatalyst for wastewater treatment under visible light through heterojunction development. Catalysts 12, 151 (2022)

    Article  CAS  Google Scholar 

  35. B. Ren, T. Wang, G. Qu, F. Deng, D. Liang, W. Yang, M. Liu, In situ synthesis of g-C3N4/TiO2 heterojunction nanocomposites as a highly active photocatalyst for the degradation of Orange II under visible light irradiation. Environ. Sci. Pollut. Res. 25, 19122–19133 (2018)

    Article  CAS  Google Scholar 

  36. G. Cao, Nanostructures & nanomaterials: synthesis, properties & applications (Imperial College Press, Covent Garden, 2004)

    Book  Google Scholar 

  37. N. Van Hung, B.T.M. Nguyet, N.H. Nghi, D.Q. Khieu, Photocatalytic degradation of Methylene Blue by using ZnO/Longan seed activated carbon under visible-light region. J. Inorg. Organomet. Polym. Mater. 31, 446–459 (2021)

    Article  Google Scholar 

  38. Y.-H. Chiu, T.-F. Chang, C.-Y. Chen, M. Sone, Y.-J. Hsu, Mechanistic insights into photodegradation of organic dyes using heterostructure photocatalysts. Catalysts 9, 430 (2019)

    Article  CAS  Google Scholar 

  39. A. Mishra, A. Mehta, S. Kainth, S. Basu, Effect of g-C3N4 loading on TiO2/Bentonite nanocomposites for efficient heterogeneous photocatalytic degradation of industrial dye under visible light. J. Alloys Compd. 764, 406–415 (2018)

    Article  CAS  Google Scholar 

  40. A.R. Kuldeep, R.S. Dhabbe, K.M. Garadkar, Development of g-C3N4-TiO2 visible active hybrid photocatalyst for the photodegradation of methyl orange. Res. Chem. Intermed. 47, 5155–5174 (2021)

    Article  CAS  Google Scholar 

  41. M.A. Qamar, S. Shahid, M. Javed, S. Iqbal, M. Sher, M.B. Akbar, Highly efficient g-C3N4/Cr-ZnO nanocomposites with superior photocatalytic and antibacterial activity. J. Photochem. Photobiol. A 401, 112776 (2020)

    Article  CAS  Google Scholar 

  42. D. Chaudhary, V.D. Vankar, N. Khare, Noble metal-free g-C3N4/TiO2/CNT ternary nanocomposite with enhanced photocatalytic performance under visible-light irradiation via multi-step charge transfer process. Sol. Energy 158, 132–139 (2017)

    Article  CAS  Google Scholar 

  43. I. Troppová, M. Šihor, M. Reli, M. Ritz, P. Praus, K. Kočí, Unconventionally prepared TiO2/g-C3N4 photocatalysts for photocatalytic decomposition of nitrous oxide. Appl. Surf. Sci. 430, 335–347 (2018)

    Article  Google Scholar 

  44. M.A. Desai, V. Sharma, M. Prasad, G. Gund, S. Jadkar, S.D. Sartale, Photoelectrochemical performance of MWCNT–Ag–ZnO ternary hybrid: a study of ag loading and MWCNT garnishing. J. Mater. Sci. 56, 8627–8642 (2021)

    Article  CAS  Google Scholar 

  45. G.W. Ruirui Hao, C. Jiang, H. Tang, Q. Xu, In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for rhodamine B degradation. Appl. Surface Sci. 411, 400–410 (2017)

    Article  Google Scholar 

  46. L.C. Sim, K.S. Koh, K.H. Leong, Y.H. Chin, A.A. Aziz, P. Saravanan, In situ growth of g-C3N4 on TiO2 nanotube arrays: construction of heterostructures for improved photocatalysis properties. J. Environ. Chem. Eng. 8, 103611 (2020)

    Article  CAS  Google Scholar 

  47. R. Hao, G. Wang, H. Tang, L. Sun, C. Xu, D. Han, Template-free preparation of macro/mesoporous g-C3N4/TiO2 heterojunction photocatalysts with enhanced visible light photocatalytic activity. Appl. Catal. B 187, 47–58 (2016)

    Article  CAS  Google Scholar 

  48. R. Bibi, Q. Shen, L. Wei, D. Hao, N. Li, J. Zhou, Hybrid BiOBr/UiO-66-NH2 composite with enhanced visible-light driven photocatalytic activity toward RhB dye degradation. RSC Adv. 8, 2048–2058 (2018)

    Article  CAS  Google Scholar 

  49. M.A. Desai, A.N. Vyas, G.D. Saratale, S.D. Sartale, Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. Int. J. Hydrog. Energy 44, 2091–2127 (2019)

    Article  CAS  Google Scholar 

  50. M.A. Desai, V. Sharma, M. Prasad, S. Jadkar, G.D. Saratale, S.D. Sartale, Seed-layer-free deposition of well-oriented ZnO nanorods thin films by SILAR and their photoelectrochemical studies. Int. J. Hydrog. Energy 45, 5783–5792 (2020)

    Article  CAS  Google Scholar 

  51. R.T. Thomas, N. Sandhyarani, Template free synthesis of graphitic carbon nitride/titania mesoflowers. RSC Adv. 5, 72683–72690 (2015)

    Article  Google Scholar 

  52. S. Ma, J. Xue, Y. Zhou, Z. Zhang, Z. Cai, D. Zhu, S. Liang, Facile fabrication of a mpg-C3N4/TiO2 heterojunction photocatalyst with enhanced visible light photoactivity toward organic pollutant degradation. RSC Adv. 5, 64976–64982 (2015)

    Article  CAS  Google Scholar 

  53. R. Hao, G. Wang, C. Jiang, H. Tang, Q. Xu, In situ hydrothermal synthesis of g-C3N4/TiO2 heterojunction photocatalysts with high specific surface area for rhodamine B degradation. Appl. Surf. Sci. 411, 400–410 (2017)

    Article  CAS  Google Scholar 

  54. X. Yan, Q. Gao, J. Qin, X. Hui, Z. Ye, J. Li, Z. Ma, A facile method for fabricating TiO2/g-C3N4 hollow nanotube heterojunction and its visible light photocatalytic performance. Mater. Lett. 217, 1–4 (2018)

    Article  CAS  Google Scholar 

  55. W. Zhao, X. Yang, C. Liu, X. Qian, Y. Wen, Q. Yang, T. Sun, W. Chang, X. Liu, Z. Chen, Facile construction of all-solid-state Z-scheme g-C3N4/TiO2 thin film for the efficient visible-light degradation of organic pollutant. Nanomaterials 10, 600 (2020)

    Article  CAS  Google Scholar 

  56. K. Li, Z. Huang, X. Zeng, B. Huang, S. Gao, J. Lu, Synergetic effect of Ti3+ and oxygen doping on enhancing photoelectrochemical and photocatalytic properties of TiO2/g-C3N4 heterojunctions. ACS Appl. Mater. Interfaces 9, 11577–11586 (2017)

    Article  CAS  Google Scholar 

  57. D. Zhou, Z. Chen, Q. Yang, C. Shen, G. Tang, S. Zhao, J. Zhang, D. Chen, Q. Wei, X. Dong, Facile construction of g-C3N4 nanosheets/TiO2 nanotube arrays as Z-scheme photocatalyst with enhanced visible-light performance. ChemCatChem 8, 1–11 (2016)

  58. W. Gu, F. Lu, C. Wang, S. Kuga, L. Wu, Y. Huang, M. Wu, Face-to-face interfacial assembly of ultrathin g-C3N4 and anatase TiO2 nanosheets for enhanced solar photocatalytic activity. ACS Appl. Mater. Interfaces 9, 28674–28684 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Prof. Dr. Parasharam M. Shirage, Indian Institute of Technology (IIT) Indore, Indore, India for providing FESEM instrumental facility. Authors are also thankful to Prof. Dr. S. R. Jadkar and Ms Shruti Shah, Department of Physics, Savitribai Phule Pune University, Pune, India for their support in photocurrent measurements.

Funding

The authors are grateful to Savitribai Phule Pune University, Pune, India for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

SMY contributed to conceptualization, data collection and analysis and manuscript writing, MAD contributed to data analysis, manuscript writing and editing, SDS contributed to supervision, review, editing and funding. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Mangesh A. Desai or Shrikrishna D. Sartale.

Ethics declarations

Competing interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 815 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, S.M., Desai, M.A. & Sartale, S.D. Superoxide (O2) radical species driven type II TiO2/g-C3N4 heterojunction photocatalyst for RhB dye degradation. J Mater Sci: Mater Electron 34, 1651 (2023). https://doi.org/10.1007/s10854-023-11019-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11019-z

Navigation