Skip to main content
Log in

Photoelectrochemical performance of MWCNT–Ag–ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Herein, by using chemical methods such as successive ionic layer adsorption and reaction (SILAR) and spin coating we have demonstrated a novel strategy for the synthesis of ternary hybrid to study photoelectrochemical (PEC) performance. To the best of our knowledge, for the first time we have represented a case study of achieving optimum SILAR cycles for Ag nanoparticles decoration on ZnO nanorods and a discussion was made on a role of multi-walled carbon nanotube (MWCNT) as a top layer over Ag–ZnO nanostructures for better PEC performance. Firstly, Ag nanoparticles loading over SILAR grown ZnO nanorods was varied for different SILAR cycles to optimize better photocurrent. This Ag–ZnO hybrid showed higher photocurrent density of 0.45 mA/cm2 at 1 V bias (vs SCE) and photoconversion efficiency (PCE) of 0.21% (0.45 V vs SCE). Thereafter, MWCNTs were garnished by using spin coating as a top layer on Ag–ZnO hybrid leading to the formation of ternary hybrid of MWCNT–Ag–ZnO for further enhancement of PEC activity. We believe that top layer of MWCNT plays a vital role of electron and hole transfer and bridges Ag decorated ZnO nanorods together leading to well-connected conducting pathways for efficient charge collection and transport. The appropriate band bending of MWCNT–Ag–ZnO hybrid leads to the formation of active interface helping out in charge separation leading to excellent photocurrent density of 0.56 mA/cm2 at 1 V bias (vs SCE) and photoconversion efficiency of 0.26% (0.45 V vs SCE).

Graphical abstract

Enhanced light harvesting, higher donor density, appropriate band bending, lowest charge transfer radius of C–Ag–ZnO hybrid signifies that efficient charge transfer and restriction to charge recombination leading to the enhanced PEC performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535

    CAS  Google Scholar 

  2. Haladkar SA, Desai MA, Sartale SD, Alegaonkar PS (2018) Assessment of ecologically prepared carbon-nano-spheres for fabrication of flexible and durable supercell devices. J Mater Chem A 6:7246–7256

    CAS  Google Scholar 

  3. Li Y, Zhang JZ (2010) Hydrogen generation from photoelectrochemical water splitting based on nanomaterials. Laser Photonics Rev 4:517–528

    CAS  Google Scholar 

  4. van de Krol R, Liang Y, Schoonman J (2008) Solar hydrogen production with nanostructured metal oxides. J Mater Chem 18:2311–2320

    Google Scholar 

  5. Desai MA, Vyas AN, Saratale GD, Sartale SD (2019) Zinc oxide superstructures: recent synthesis approaches and application for hydrogen production via photoelectrochemical water splitting. Int J Hydrog Energy 44:2091–2127

    CAS  Google Scholar 

  6. Desai MA, Sharma V, Prasad M, Jadkar S, Saratale GD, Sartale SD (2019) Seed-layer-free deposition of well-oriented ZnO nanorods thin films by SILAR and their photoelectrochemical studies. Int J Hydrog Energy. https://doi.org/10.1016/j.ijhydene.2019.09.150

    Article  Google Scholar 

  7. Wang T, Lv R, Zhang P, Li C, Gong J (2015) Au nanoparticle sensitized ZnO nanopencil arrays for photoelectrochemical water splitting. Nanoscale 7:77–81

    CAS  Google Scholar 

  8. Desai MA, Sartale S (2016) Zinc oxide thin films: nanoflakes to spongy balls via seed layer. Adv Sci Lett 22:880–883

    Google Scholar 

  9. Yang X, Wolcott A, Wang G, Sobo A, Fitzmorris RC, Qian F, Zhang JZ, Li Y (2009) Nitrogen-doped zno nanowire arrays for photoelectrochemical water splitting. Nano Lett 9:2331–2336

    CAS  Google Scholar 

  10. Kumari B, Sharma S, Singh N, Verma A, Satsangi VR, Dass S, Shrivastav R (2014) ZnO thin films, surface embedded with biologically derived Ag/Au nanoparticles, for efficient photoelectrochemical splitting of water. Int J Hydrog Energy 39:18216–18229

    CAS  Google Scholar 

  11. Li H, Yao C, Meng L, Sun H, Huang J, Gong Q (2013) Photoelectrochemical performance of hydrogenated ZnO/CdS core–shell nanorod arrays. Electrochim Acta 108:45–50

    CAS  Google Scholar 

  12. Kargar A, Jing Y, Kim SJ, Riley CT, Pan X, Wang D (2013) ZnO/CuO Heterojunction branched nanowires for photoelectrochemical hydrogen generation. ACS Nano 7:11112–11120

    CAS  Google Scholar 

  13. Hsu Y-K, Chen Y-C, Lin Y-G (2015) Novel ZnO/Fe2O3 core-shell nanowires for photoelectrochemical water splitting. ACS Appl Mater Interfaces 7:14157–14162

    CAS  Google Scholar 

  14. Wei Y, Du H, Kong J, Lu X, Ke L, Sun XW (2014) Multi-walled carbon nanotubes modified zno nanorods: a photoanode for photoelectrochemical cell. Electrochim Acta 143:188–195

    CAS  Google Scholar 

  15. Wei Y, Kong J, Yang L, Ke L, Tan HR, Liu H, Huang Y, Sun XW, Lu X, Du H (2013) Polydopamine-assisted decoration of ZnO nanorods with Ag nanoparticles: an improved photoelectrochemical anode. J Mater Chem A 1:5045–5052

    CAS  Google Scholar 

  16. Tarwal N, Patil P (2011) Enhanced photoelectrochemical performance of Ag–ZnO thin films synthesized by spray pyrolysis technique. Electrochim Acta 56:6510–6516

    CAS  Google Scholar 

  17. Sharma V, Prasad M, Rokade A, Ilaiyaraja P, Sudakar C, Jadkar S (2019) Ag−Au-bimetal incorporated ZnO-nanorods photo-anodes for efficient photoelectrochemical splitting of water. Energy Technol 7:233–239

    CAS  Google Scholar 

  18. Thomas M, Sun W, Cui J (2012) Mechanism of Ag doping in ZnO nanowires by electrodeposition: experimental and theoretical insights. J Phys Chem C 116:6383–6391

    CAS  Google Scholar 

  19. Lupan O, Cretu V, Postica V, Ahmadi M, Cuenya BR, Chow L, Tiginyanu I, Viana B, Pauporté T, Adelung R (2016) Silver-doped zinc oxide single nanowire multifunctional nanosensor with a significant enhancement in response. Sens Actuators B Chem 223:893–903

    CAS  Google Scholar 

  20. Pauporté T, Lupan O, Zhang J, Tugsuz T, Ciofini I, Labat F, Viana B (2015) Low-temperature preparation of Ag-doped ZnO nanowire arrays, DFT study, and application to light-emitting diode. ACS Appl Mater Interf 7:11871–11880

    Google Scholar 

  21. Prasad M, Sharma V, Aher R, Rokade A, Ilaiyaraja P, Sudakar C, Jadkar S (2017) Synergistic effect of Ag plasmon-and reduced graphene oxide-embedded ZnO nanorod-based photoanodes for enhanced photoelectrochemical activity. J Mater Sci 52:13572–13585. https://doi.org/10.1007/s10853-017-1436-4

    Article  CAS  Google Scholar 

  22. Xiao J, Zhang X, Li Y (2015) A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting. Int J Hydrog Energy 40:9080–9087

    CAS  Google Scholar 

  23. Han W, Ren L, Qi X, Liu Y, Wei X, Huang Z, Zhong J (2014) Synthesis of CdS/ZnO/graphene composite with high-efficiency photoelectrochemical activities under solar radiation. Appl Surf Sci 299:12–18

    CAS  Google Scholar 

  24. Patil SS, Johar MA, Hassan MA, Patil DR, Ryu S-W (2018) Anchoring MWCNTs to 3D honeycomb ZnO/GaN heterostructures to enhancing photoelectrochemical water oxidation. Appl Catal B 237:791–801

    CAS  Google Scholar 

  25. Tang Y, Zheng Z, Sun X, Li X, Li L (2019) Ternary CdS-MoS2 coated ZnO nanobrush photoelectrode for one-dimensional acceleration of charge separation upon visible light illumination. Chem Eng J 368:448–458

    CAS  Google Scholar 

  26. Desai MA, Sartale SD (2014) ZnS nanoflakes deposition by modified chemical method. AIP Conf Proc 1591:1763–1765

    CAS  Google Scholar 

  27. Pathan H, Lokhande C (2004) Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method. Bull Mater Sci 27:85–111

    CAS  Google Scholar 

  28. Shaikh IM, Sartale SD (2018) SILAR grown Ag nanoparticles as an efficient large area SERS substrate. J Raman Spectrosc 49:1274–1287

    CAS  Google Scholar 

  29. Vyas AN, Desai MA, Phase DM, Saratale RG, Ambekar JD, Kale BB, Pathan HM, Sartale SD (2019) Nickel nanoparticles grown by successive ionic layer adsorption and reaction method for ethanol electrooxidation and electrochemical quartz crystal microbalance study. New J Chem 43:2955–2965

    CAS  Google Scholar 

  30. Desai MA, Sartale SD (2015) Facile soft solution route to engineer hierarchical morphologies of ZnO nanostructures. Cryst Growth Des 15:4813–4820

    CAS  Google Scholar 

  31. Wahab R, Ansari S, Kim YS, Song M, Shin H-S (2009) The role of pH variation on the growth of zinc oxide nanostructures. Appl Surf Sci 255:4891–4896

    CAS  Google Scholar 

  32. Pawar RC, Shaikh JS, Babar AA, Dhere PM, Patil PS (2011) Aqueous chemical growth of ZnO disks, rods, spindles and flowers: pH dependency and photoelectrochemical properties. Sol Energy 85:1119–1127

    CAS  Google Scholar 

  33. Rozati SM, Moradi S, Golshahi S, Martins R, Fortunato E (2009) Electrical, structural and optical properties of fluorine-doped zinc oxide thin films: Effect of the solution aging time. Thin Solid Films 518:1279–1282

    CAS  Google Scholar 

  34. Varma RS, Thorat N, Fernandes R, Kothari DC, Patel N, Miotello A (2016) Dependence of photocatalysis on charge carrier separation in Ag-doped and decorated TiO2 nanocomposites. Catal Sci Technol 6:8428–8440

    CAS  Google Scholar 

  35. Moraes RA, Matos CF, Castro EG, Schreiner WH, Oliveira MM, Zarbin AJ (2011) The effect of different chemical treatments on the structure and stability of aqueous dispersion of iron-and iron oxide-filled multi-walled carbon nanotubes. J Braz Chem Soc 22:2191–2201

    CAS  Google Scholar 

  36. Chen C, Zheng Y, Zhan Y, Lin X, Zheng Q, Wei K (2011) Enhanced Raman scattering and photocatalytic activity of Ag/ZnO heterojunction nanocrystals. Dalton Trans 40:9566–9570

    CAS  Google Scholar 

  37. Bazant P, Kuritka I, Munster L, Kalina L (2015) Microwave solvothermal decoration of the cellulose surface by nanostructured hybrid Ag/ZnO particles: a joint XPS XRD and SEM study. Cellulose 22:1275–1293

    CAS  Google Scholar 

  38. Zhang X, Wang Y, Hou F, Li H, Yang Y, Zhang X, Yang Y, Wang Y (2017) Effects of Ag loading on structural and photocatalytic properties of flower-like ZnO microspheres. Appl Surf Sci 391:476–483

    CAS  Google Scholar 

  39. Sawant SY, Kim JY, Han TH, Ansari SA, Cho MH (2018) Electrochemically active biofilm-assisted biogenic synthesis of an Ag-decorated ZnO@ C core–shell ternary plasmonic photocatalyst with enhanced visible-photocatalytic activity. New J Chem 42:1995–2005

    CAS  Google Scholar 

  40. Travessa DN, Silva FSd, Cristovan FH, Jorge Jr AM, Cardoso KR (2014) Ag ion decoration for surface modifications of multi-walled carbon nanotubes. Mater Res 17:687–693

    CAS  Google Scholar 

  41. Corio P, Santos A, Santos PS, Temperini MLA, Brar V, Pimenta MA, Dresselhaus M (2004) Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem Phys Lett 383:475–480

    CAS  Google Scholar 

  42. Allagui A, Alawadhi H, Alkaaby M, Gaidi M, Mostafa K, Abdulaziz Y (2016) Mott–Schottky analysis of flower‐like ZnO microstructures with constant phase element behavior. Physica Status Solidi (a) 213:139–145

    CAS  Google Scholar 

  43. Yang Y, Guo W, Wang X, Wang Z, Qi J, Zhang Y (2012) Size dependence of dielectric constant in a single pencil-like ZnO nanowire. Nano Lett 12:1919–1922

    CAS  Google Scholar 

  44. Chaudhary D, Singh S, Vankar VD, Khare N (2017) A ternary Ag/TiO2/CNT photoanode for efficient photoelectrochemical water splitting under visible light irradiation. Int J Hydrog Energy 42:7826–7835

    CAS  Google Scholar 

  45. Chiu Y-H, Chang K-D, Hsu Y-J (2018) Plasmon-mediated charge dynamics and photoactivity enhancement for Au-decorated ZnO nanocrystals. J Mater Chem A 6:4286–4296

    CAS  Google Scholar 

  46. Rokade A, Rondiya S, Sharma V, Prasad M, Pathan H, Jadkar S (2017) Electrochemical synthesis of 1D ZnO nanoarchitectures and their role in efficient photoelectrochemical splitting of water. J Solid State Electrochem 21:2639–2648

    CAS  Google Scholar 

  47. Trang TNQ, Phan TB, Nam ND, Thu VTH (2020) In Situ charge transfer at the Ag@ZnO photoelectrochemical interface toward the high photocatalytic performance of H2 evolution and RhB degradation. ACS Appl Mater Interf 12:12195–12206

    CAS  Google Scholar 

  48. Adam RE, Pirhashemi M, Elhag S, Liu X, Habibi-Yangjeh A, Willander M, Nur O (2019) ZnO/Ag/Ag2WO4 photo-electrodes with plasmonic behavior for enhanced photoelectrochemical water oxidation. RSC Adv 9:8271–8279

    CAS  Google Scholar 

  49. Shu Q, Wei J, Wang K, Zhu H, Li Z, Jia Y, Gui X, Guo N, Li X, Ma C (2009) Hybrid heterojunction and photoelectrochemistry solar cell based on silicon nanowires and double-walled carbon nanotubes. Nano Lett 9:4338–4342

    CAS  Google Scholar 

  50. Pirhashemi M, Habibi-Yangjeh A (2017) Ultrasonic-assisted preparation of plasmonic ZnO/Ag/Ag2WO4 nanocomposites with high visible-light photocatalytic performance for degradation of organic pollutants. J Colloid Interf Sci 491:216–229

    CAS  Google Scholar 

  51. Zhang H, Chen G, Bahnemann DW (2009) Photoelectrocatalytic materials for environmental applications. J Mater Chem 19:5089–5121

    CAS  Google Scholar 

  52. Wu Z, Xu C, Wu Y, Yu H, Tao Y, Wan H, Gao F (2013) ZnO nanorods/Ag nanoparticles heterostructures with tunable Ag contents: a facile solution-phase synthesis and applications in photocatalysis. CrystEngComm 15:5994–6002

    CAS  Google Scholar 

  53. Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121

    CAS  Google Scholar 

  54. Oh W-C, Zhang F-J, Chen M-L (2010) Characterization and photodegradation characteristics of organic dye for Pt–titania combined multi-walled carbon nanotube composite catalysts. J Ind Eng Chem 16:321–326

    CAS  Google Scholar 

  55. Oh W-C, Chen M-L (2008) Synthesis and characterization of CNT/TiO 2 composites thermally derived from MWCNT and titanium (IV) n-butoxide. Bull Korean Chem Soc 29:159–164

    CAS  Google Scholar 

  56. Zhao Q, Tan S, Xie M, Liu Y, Yi J (2018) A study on the CNTs-Ag composites prepared based on spark plasma sintering and improved electroless plating assisted by ultrasonic spray atomization. J Alloy Compd 737:31–38

    CAS  Google Scholar 

  57. Lan F, Li G (2013) Direct observation of hole transfer from semiconducting polymer to carbon nanotubes. Nano Lett 13:2086–2091

    CAS  Google Scholar 

Download references

Acknowledgements

Mangesh A. Desai is thankful to Council of Scientific and Industrial Research (CSIR), India, for awarding senior research fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shrikrishna D. Sartale.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Handling Editor: Kyle Brinkman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, M.A., Sharma, V., Prasad, M. et al. Photoelectrochemical performance of MWCNT–Ag–ZnO ternary hybrid: a study of Ag loading and MWCNT garnishing. J Mater Sci 56, 8627–8642 (2021). https://doi.org/10.1007/s10853-021-05821-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-05821-5

Navigation