Skip to main content
Log in

Enhanced structural and optical properties of high Al composition non-polar a-plane AlGaN epitaxial layer by optimizing growth flow sequence

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The non-polar a-plane AlGaN epitaxial layer with an Al composition as high as 0.69 and enhanced structural and optical properties was successfully grown by metal-organic chemical vapor deposition technique under optimized growth flow sequence (GFS). Comprehensive studies were performed to investigate the impacts of GFS on the structural and optical characteristics of the a-plane AlGaN epitaxial layers. It was found that GFS notably influences the Al composition of the a-plane AlGaN, and the surface morphology, crystalline quality, and compositional homogeneity could be improved significantly by optimizing GFS. Significant reduction in the full width at half maximum (FWHM) value of (\(11\bar{2}0\)) X-ray rocking curves along both [0001] and [\(1\bar{1}00\)] directions, and the evident decrease in surface roughness and surface undulation were achieved under the optimized GFS. In addition, a superior optical transparency and a narrow near-band-edge emission peak with the FWHM value of 6.9 nm were achieved for the high Al composition non-polar a-plane AlGaN epitaxial layer grown under the GFS with synchronously injected trimethyl-aluminum and trimethyl-gallium flows but separatively fed ammonia flow. The enhanced structural and optical properties of the non-polar a-plane AlGaN epitaxial layer were ascribed to the increased migration ability and the well-ordered arrangement of metal adatoms in AlGaN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. M. Kneissl, T.-Y. Seong, J. Han, H. Amano, Nat. Photonics. 13, 233 (2019)

    Article  CAS  Google Scholar 

  2. L. Lu, X. Zhang, S. Wang, A. Fan, S. Chen, C. Li, A. Nasir, Z. Zhuang, G. Hu, Y. Cui, J. Mater. Sci. Mater. Electron. 32, 18138 (2021)

    Article  CAS  Google Scholar 

  3. S. Mohn, N. Stolyarchuk, T. Markurt, R. Kirste, M.P. Hoffmann, R. Collazo, A. Courville, R. Di Felice, Z. Sitar, P. Vennéguès, M. Albrecht, Phys. Rev. Appl. 5, 054004 (2016)

    Article  Google Scholar 

  4. N. Susilo, E. Ziffer, S. Hagedorn, L. Cancellara, C. Netzel, N.L. Ploch, S. Wu, J. Rass, S. Walde, L. Sulmoni, M. Guttmann, T. Wernicke, M. Albrecht, M. Weyers, M. Kneissl, Photonics Res. 8, 589 (2020)

    Article  CAS  Google Scholar 

  5. S. Walde, C.-Y. Huang, C.-L. Tsai, W.-H. Hsieh, Y.-K. Fu, S. Hagedorn, H.-W. Yen, T.-C. Lu, M. Weyers, C.-Y. Huang, Acta Mater. 226, 117625 (2022)

    Article  CAS  Google Scholar 

  6. F. Zhang, L. Huang, J. Zhang, Z. Liang, C. Zhang, S. Liu, W. Luo, J. Kang, J. Cao, T. Li, Q. Wang, Y. Yuan, Symmetry 14, 573 (2022)

    Article  Google Scholar 

  7. J. Zhao, X. Zhang, J. He, S. Chen, Z. Wu, A. Fan, Q. Dai, Z.C. Feng, Y. Cui, ACS Photonics. 5, 1903 (2018)

    Article  CAS  Google Scholar 

  8. M.R. Laskar, T. Ganguli, N. Hatui, A.A. Rahman, M.R. Gokhale, A. Bhattacharya, J. Cryst. Growth. 315, 208 (2011)

    Article  CAS  Google Scholar 

  9. C.H. Chiang, K.M. Chen, Y.H. Wu, Y.S. Yeh, W.I. Lee, J.F. Chen, K.L. Lin, Y.L. Hsiao, W.C. Huang, E.Y. Chang, Appl. Surf. Sci. 257, 2415 (2011)

    Article  CAS  Google Scholar 

  10. B. Hyun Kong, H. Koun Cho, K. Man, Song, D. Ho, Yoon, J. Cryst. Growth. 313, 8 (2010)

    Article  Google Scholar 

  11. M.N. Abd Rahman, N.A. Talik, M.I.M. Abdul Khudus, A.F. Sulaiman, K. Allif, N.M. Zahir, A. Shuhaimi, CrystEngComm 21, 2009 (2019)

    Article  CAS  Google Scholar 

  12. J.H. Kim, P. Bagheri, R. Kirste, P. Reddy, R. Collazo, Z. Sitar, Phys. Status Solidi A 220, 2200390 (2023)

    Article  Google Scholar 

  13. W. Luo, B. Liu, Z. Li, F. Yang, Z. Li, Q. Yang, H. Gao, K. Wang, R. Zhang, Appl. Phys. Express. 13, 015511 (2020)

    Article  CAS  Google Scholar 

  14. K. Jiang, X. Sun, J. Ben, Z. Shi, Y. Jia, Y. Wu, C. Kai, Y. Wang, D. Li, CrystEngComm 21, 4864 (2019)

    Article  CAS  Google Scholar 

  15. H. Xu, H. Long, J. Jiang, M. Sheikhi, L. Li, W. Guo, J. Dai, C. Chen, J. Ye, Nanotechnology. 30, 435202 (2019)

    Article  CAS  Google Scholar 

  16. N. Wang, X. Zhang, J. Zhao, H. Zhang, Z. Wu, Q. Dai, S. Wang, G. Hu, Y. Cui, Appl. Phys. Express. 10, 045503 (2017)

    Article  Google Scholar 

  17. A. Nasir, X. Zhang, A. Fan, S. Chen, N. Wang, J. Zhao, Z. Wu, G. Yang, Y. Cui, Optik. 192, 162978 (2019)

    Article  CAS  Google Scholar 

  18. J. Zhao, X. Zhang, Q. Dai, N. Wang, Z. Wu, S. Wang, Y. Cui, Appl. Phys. Express. 10, 011002 (2017)

    Article  Google Scholar 

  19. K. Wang, R. Kirste, S. Mita, S. Washiyama, W. Mecouch, P. Reddy, R. Collazo, Z. Sitar, Appl Phys Lett 120, 211105 (2022)

    Article  Google Scholar 

  20. I.O. Mayboroda, A.A. Knizhnik, Y.V. Grishchenko, J. Appl. Phys. 12, 107 (2017)

    Google Scholar 

  21. S. Chen, X. Zhang, S. Wang, A. Fan, J. He, C. Li, L. Lu, L. Rao, Z. Zhuang, G. Hu, Y. Cui, J. Alloys Compd. 872, 159706 (2021)

    Article  CAS  Google Scholar 

  22. F. Chen, X. Ji, S.P. Lau, Mater. Sci. Eng. R Rep. 142, 100578 (2020)

    Article  Google Scholar 

  23. J. An, X. Dai, Q. Zhang, R. Guo, L. Feng, ACS Omega. 5, 11792 (2020)

    Article  CAS  Google Scholar 

  24. Y. Tian, X. Zhang, A. Fan, Y. Shen, S. Chen, B. Chen, X. Luo, Z. Zhuang, J. Lyu, G. Hu, Y. Cui, Mater. Sci. Semicond. Process. 138, 106312 (2022)

    Article  CAS  Google Scholar 

  25. M. Imura, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, A. Bandoh, J. Cryst. Growth. 300, 136 (2007)

    Article  CAS  Google Scholar 

  26. H. Fujikura, T. Konno, Appl. Phys. Lett. 113, 152101 (2018)

    Article  Google Scholar 

  27. J.L. Hollander, M.J. Kappers, C. McAleese, C.J. Humphreys, Appl. Phys. Lett. 92, 101104 (2008)

    Article  Google Scholar 

  28. J. He, X. Zhang, J. Zhao, S. Chen, Z. Wu, A. Fan, Y. Zhu, M. Wang, Z.C. Feng, G. Hu, Y. Cui, Mater. Sci. Semicond. Process. 90, 219 (2019)

    Article  CAS  Google Scholar 

  29. I. Bryan, Z. Bryan, S. Mita, A. Rice, L. Hussey, C. Shelton, J. Tweedie, J.-P. Maria, R. Collazo, Z. Sitar, J. Cryst. Growth 451, 65 (2016)

    Article  CAS  Google Scholar 

  30. E. Monroy, N. Gogneau, F. Enjalbert, F. Fossard, D. Jalabert, E. Bellet-Amalric, L.S. Dang, B. Daudin, J. Appl. Phys. 94, 3121 (2003)

    Article  CAS  Google Scholar 

  31. S. Chen, X. Zhang, A. Fan, H. Chen, C. Li, L. Lu, L. Rao, Z. Zhuang, J. Lyu, G. Hu, Y. Cui, J. Mater. Sci. 55, 12022 (2020)

    Article  CAS  Google Scholar 

  32. J.-S. Lee, D. Byun, H.-K. Oh, Y.J. Choi, H.-Y. Lee, J.-H. Kim, T.-Y. Lim, J. Hwang, J. Cryst. Growth. 346, 83 (2012)

    Article  CAS  Google Scholar 

  33. C.-P. Huang, K. Gupta, C.-H. Wang, C.-P. Liu, K.-Y. Lai, Sci. Rep. 7, 7135 (2017)

    Article  Google Scholar 

  34. D.G. Zhao, Z.S. Liu, J.J. Zhu, S.M. Zhang, D.S. Jiang, H. Yang, J.W. Liang, X.Y. Li, H.M. Gong, Appl. Surf. Sci. 253, 2452 (2006)

    Article  CAS  Google Scholar 

  35. Y. Cho, G. Gainer, J. Lam, J. Song, W. Yang, W. Jhe, Phys. Rev. B 61, 7203 (2000)

    Article  CAS  Google Scholar 

  36. X. Pan, X. Wang, H. Xiao, C. Wang, C. Yang, W. Li, W. Wang, P. Jin, Z. Wang, Appl. Surf. Sci. 257, 8718 (2011)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Project of Science and Technology Department of Jiangsu Province, People’s Republic of China (Grant No. BE2021008-4), the National Natural Science Foundation Program of China (Grant No. 62075038), and the Fundamental Research Funds for the Central Universities (Grant No. 2242023K30035).

Funding

This study was supported by Key Research and Development Project of Science and Technology Department of Jiangsu Province, BE2021008-4; National Natural Science Foundation Program of China, 62075038; Fundamental Research Funds for the Central Universities, 2242023K30035.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: RF; Methodology: RF; Formal analysis and investigation: RF, XL, SW, LC, SX, ZL, YX; Writing—original draft preparation: RF; Writing—review and editing: RF, XZ, XL, SW, LC, SX, ZL, YX; Funding acquisition: XZ, GH; Resources: XZ, GH; Supervision: XZ.

Corresponding author

Correspondence to Xiong Zhang.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, R., Zhang, X., Luo, X. et al. Enhanced structural and optical properties of high Al composition non-polar a-plane AlGaN epitaxial layer by optimizing growth flow sequence. J Mater Sci: Mater Electron 34, 1607 (2023). https://doi.org/10.1007/s10854-023-11015-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11015-3

Navigation