Skip to main content
Log in

Growth and characterization of organic 2,2′,4,4′-tetrahydroxybenzophenone single crystals for nonlinear optical applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The organic 2,2′,4,4′-tetrahydroxybenzophenone single crystal was grown by slow evaporation solution growth technique. The single crystal X-ray diffraction studies show that the grown 2,2′,4,4′-tetrahydroxybenzophenone crystal belongs to the monoclinic crystal system with the centrosymmetric space group of C2/c. The grown crystals’ functional groups have been identified by the FTIR and FT-Raman spectral studies. The UV–Visible studies show that the cut-off wavelength was observed around 401 nm and the grown crystal has good transmittance in the visible regions. The optical parameters such as optical band gap (Eg), extinction coefficient (K), Urbach energy (EU), and skin depth (δ) were calculated. The TG/DTA analyses were used to find the thermal stability of the grown crystal. The dielectric properties of the grown 2,2′,4,4′-tetrahydroxybenzophenone single crystal were analyzed by using the parallel plate capacitor method. The nonlinear optical properties of the grown 2,2′,4,4′-tetrahydroxybenzophenone crystal was measured using the Z-scan technique. The grown 2,2′,4,4′-tetrahydroxybenzophenone single crystals optical limiting threshold values were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this manuscript.

References

  1. V. Usharani, J. Natarajan, M. Judes, P. Arivanandhan, S. Anandan, Optik 127, 5887–5893 (2016)

    Article  CAS  Google Scholar 

  2. L. Wang, C. Liu, S. Shen, Xu. Mingzhen, X. Liu, Adv. Ind. Eng. Polym. Res. 3, 138–148 (2020)

    Google Scholar 

  3. B.D. Hatton, K. Landskron, W.J. Hunks, M.R. Bennett, D. Shukaris, D.D. Perovic, G.A. Ozin, Mater. Today 9, 22–31 (2006)

    Article  CAS  Google Scholar 

  4. T. Suthan, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Spectrochim. Acta Part A 78, 771–776 (2011)

    Article  CAS  Google Scholar 

  5. T. Suthan, N.P. Rajesh, C.K. Mahadevan, K. Senthil Kumar, G. Bhagavannarayana, Spectrochim. Acta Part A 79, 1443–1448 (2011)

    Article  CAS  Google Scholar 

  6. S.R. Yousefi, M. Ghanbari, O. Amiri, Z. Marzhoseyni, P. Mehdizadeh, M. Hajizadeh-Oghaz, M. Salavati-Niasari, J. Am. Ceram. Soc. 104, 2952–2965 (2021)

    Article  CAS  Google Scholar 

  7. S.R. Yousefi, H.A. Alshamsi, O. Amiri, M. Salavati-Niasari, J. Mol. Liq. 337, 116405 (2021)

    Article  CAS  Google Scholar 

  8. M.A. Mahdi, S.R. Yousefi, L.S. Jasim, M. Salavati-Niasari, Int. J. Hydrog. Energy 47, 14319–14330 (2022)

    Article  CAS  Google Scholar 

  9. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Cryst. Eng. Comm 13, 4018–4024 (2011)

    Article  CAS  Google Scholar 

  10. S. Usharani, J. Judes, V. Natarajan, M. Arivanandhan, P. Anandan, D.A. Vorontsov, M.O. Marychev, Opt. Mater. 100, 109603 (2020)

    Article  CAS  Google Scholar 

  11. V. Natarajan, M. Arivanandhan, P. Anandan, K. Sankaranarayanan, G. Ravi, Y. Inatomi, Y. Hayakawa, Mater. Chem. Phys. 144, 402–408 (2014)

    Article  CAS  Google Scholar 

  12. E.O. Schlemper, Acta Cryst. B38, 554–559 (1982)

    Article  CAS  Google Scholar 

  13. J.-P. AntonioGarcia-Jimenez, P. AntonioGarcia-Ruiz, J.-L. JoseBerna, F.-C. JoseTudela, Int. J. Biol. Macromol. 98, 622–629 (2017)

    Article  Google Scholar 

  14. E. Smith, G. Dent, Modern Raman spectroscopy—a practical approach (John Wiley & Sons Ltd, England, 2005)

    Google Scholar 

  15. G. Socrates, Infrared and Raman characteristic group frequencies: tables and charts (John Wiley and sons Ltd, Chichester, 2001)

    Google Scholar 

  16. J. Coates, Interpretation of infrared spectra—a practical approach (John Wiley & Sons Ltd, Chichester, 2000)

    Book  Google Scholar 

  17. V. Krishnakumar, S. Muthunatesan, G. Keresztury, T. Sundius, Spectrochim. Acta Part A 62, 1081–1088 (2005)

    Article  CAS  Google Scholar 

  18. C.N. Banwell, E.M. McCash, Fundamentals of molecular spectroscopy, 4th edn. (Tata McGraw-Hill, New Delhi, 1994)

    Google Scholar 

  19. R.P. Jebin, T. Suthan, T.R. Anitha, N.P. Rajesh, G. Vinitha, J. Mater. Sci.: Mater. Electron. 32, 3232–3246 (2021)

    CAS  Google Scholar 

  20. B.S. Arun Sasi, R.P. Jebin, T. Suthan, C. James, J. Mol. Struct. 1146, 797–807 (2017)

    Article  CAS  Google Scholar 

  21. A.J.A. Pragasam, M. Divya, A.V. Pani Vignesh, G. Vinitha, P. Malliga, Opt. Laser Technol. 107, 428–434 (2018)

    Article  Google Scholar 

  22. S.R. Yousefi, O. Amiri, M. Salavati-Niasari, Ultrason. Sono Chem. 58, 104619 (2019)

    Article  CAS  Google Scholar 

  23. A. Rathika, G. Raman, Mater. Res. Innov. 19, 3 (2015)

    Article  Google Scholar 

  24. G. Rajasekar, M.K. Dhatchaiyini, P. Rekha, S. Sudhahar, G. Vinitha, A. Bhaskaran, J. Mater. Sci.: Mater. Electron. 31, 18732–18744 (2020)

    Google Scholar 

  25. K. Senthil, S. Kalainathan, A. Ruban Kumar, P.G. Aravindan, RSC Adv. 4, 56112–56127 (2014)

    Article  CAS  Google Scholar 

  26. T. Arumanayagam, P. Murugakoothan, J. Miner. Mater. Charact. Eng. 10, 1225–1231 (2011)

    Google Scholar 

  27. P.P. Abirami Priya, T. Suthan, S.A. Thambi Raja, V. Bena Jothy, J. Mater. Sci.: Mater. Electron. 33, 14214–14227 (2022)

    Google Scholar 

  28. K. Gayathri, P. Krishnan, P.R. Rajkumar, G. Anbalagan, Bull. Mater. Sci. 37, 1589–1595 (2014)

    Article  CAS  Google Scholar 

  29. S. Prince, T. Suthan, C. Gnanasambandam, N.P. Rajesh, G. Vinitha, J. Mater. Sci.: Mater. Electron. 33, 5909–5923 (2022)

    CAS  Google Scholar 

  30. S. Prince, T. Suthan, C. Gnanasambandam, J. Electron. Mater. 51, 1639–1652 (2022)

    Article  CAS  Google Scholar 

  31. C. Li, K. Suzuki, J. Therm. Anal. Calorim. 98, 261–266 (2009)

    Article  CAS  Google Scholar 

  32. S. Gul, A.H. AliShah, S. Bilal, J. Sci. Innov. Res. 2(3), 673–684 (2013)

    Google Scholar 

  33. S. Prince, T. Suthan, S. Goma, C. Gnanasambandam, N.P. Rajesh, J. Mater. Sci.: Mater. Electron. 34, 165 (2023)

    CAS  Google Scholar 

  34. B.K. Singh, J. Chandra, H.K. Rajor, Int. J. Appl. Chem. 13, 235–253 (2017)

    Google Scholar 

  35. J. Balaji, P. Srinivasan, S. Prabu, M. George, D. Sajan, J. Mol. Struct. 1207, 127750 (2020)

    Article  CAS  Google Scholar 

  36. T. Suthan, N.P. Rajesh, P.V. Dhanaraj, C.K. Mahadevan, Spectrochim. Acta Part A 75, 69–73 (2010)

    Article  CAS  Google Scholar 

  37. R.B. Kulkarni, S.S. Hussaini, M.D. Shirsat, Mater. Today: Proc. 23, 423–429 (2020)

    Article  CAS  Google Scholar 

  38. P. Balamurugaraj, S. Suresh, P. Koteeswari, P. Mani, J. Mater. Phys. Chem. 1, 4–8 (2013)

    Google Scholar 

  39. T. Suthan, N.P. Rajesh, J. Cryst. Growth 312, 3156–3160 (2010)

    Article  CAS  Google Scholar 

  40. T. Suthan, N.P. Rajesh, C.K. Mahadevan, G. Bhagavannarayana, Mater. Chem. Phys. 129, 433–438 (2011)

    Article  CAS  Google Scholar 

  41. T. Suthan, P.V. Dhanaraj, N.P. Rajesh, Spectrochim. Acta Part A 87, 194–198 (2012)

    Article  CAS  Google Scholar 

  42. S. Kalyanaraman, P.M. Shajinshinu, S. Vijayalakshmi, Phys. B 482, 38–42 (2016)

    Article  CAS  Google Scholar 

  43. S.S. Bala Solanki, N.P. Rajesh, T. Suthan, J. Mater. Sci.: Mater. Electron. 32, 1808–1817 (2021)

    Google Scholar 

  44. S. Kalyanaraman, P.M. Shajinshinu, S. Vijayalakshmi, J. Phys. Chem. Solids 86, 108–113 (2015)

    Article  CAS  Google Scholar 

  45. B. Aneeba, S.V. Ashvin Santhia, S. Vinu, R. Sheela Christy, J. Mater. Sci.: Mater. Electron. 32, 16961–16969 (2021)

    CAS  Google Scholar 

  46. S.S. Bala Solanki, N.P. Rajesh, T. Suthan, Opt. Laser Technol. 103, 163–169 (2018)

    Article  Google Scholar 

  47. C. Babeela, N.K. Siji Narendran, M. Pannipara, A.G. Al-Sehemi, T.C. Sabari Girisun, Mater. Chem. Phys. 237, 121827 (2019)

    Article  CAS  Google Scholar 

  48. K. Thukral, N. Vijayan, D. Haranath, K.K. Maurya, J. Philip, V.J. Ayaramakrishnan, Arab. J. Chem. 12, 3193–3201 (2019)

    Article  CAS  Google Scholar 

  49. M. Thangaraj, G. Vinitha, T.C. SabariGirisun, P. Anandan, G. Ravi, Opt. Laser Technol. 73, 130–134 (2015)

    Article  CAS  Google Scholar 

  50. M.L. Lima Rose, T. Suthan, C. Gnanasambandam, T.C. Sabari Girisun, J. Mater. Sci.: Mater. Electron. 34, 884 (2023)

    CAS  Google Scholar 

  51. M. Saravanan, T.C. Sabari Girisun, Mater. Chem. Phys. 160, 413–419 (2015)

    Article  CAS  Google Scholar 

  52. A. Pramothkumar, N. Senthilkumar, R. MaryJenila, M. Durairaj, T.C. SabariGirisun, I.V. Potheher, J. Alloys Compd. 878, 160332 (2021)

    Article  CAS  Google Scholar 

  53. M. Monisha, N. Priyadarshani, M. Durairaj, T.C. Sabari Girisun, Opt. Mater. 101, 109775 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the University Grants Commission (UGC), South Eastern Regional Office (SERO), Government of India, under the grant of Minor Research Project UGC Reference No: F. MRP-7005/16 (SERO/UGC) Link No: 7005, is hereby gratefully acknowledged.

Funding

This study was funded by University Grants Commission—South Eastern Regional Office, 7005/16, T. Suthan.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Material preparation, data collection, and analysis were performed by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to T. Suthan.

Ethics declarations

Competing interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lima Rose, M.L., Suthan, T., Goma, S. et al. Growth and characterization of organic 2,2′,4,4′-tetrahydroxybenzophenone single crystals for nonlinear optical applications. J Mater Sci: Mater Electron 34, 1679 (2023). https://doi.org/10.1007/s10854-023-11013-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11013-5

Navigation