Skip to main content
Log in

Low temperature photoluminescence study of AlxGa1−xN/GaN/AlxGa1−xN heterostructure nanocolumns

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

AlxGa1−xN/GaN/AlxGa1−xN/GaN/SiO2/Si (x = 0.12) heterostructure nanocolumns were grown by plasma-assisted molecular-beam epitaxy (PA-MBE). High-resolution transmission electron microscopy (HR-TEM) images show GaN single quantum (SQ) disk with average thickness of 3 nm and diameter of 20 nm. Reflection high electron diffraction (RHEED) images show the good growing surfaces throughout the nanocolumn heterostructure growth. High-resolution field effect scanning electron microscopy (HR-FE-SEM) characterizations show the good c-oriented GaN (0001) fiber texture. The photoluminescence study of GaN inserted in Al0.12Ga0.88N alloys nanocolumns at low temperatures are presented. The PL spectra at 10 K show a strong excitonic emission peak at 3.477 eV attributed to the donor-bound exciton (D0XA) of GaN. A strong emission peak at 3.54 eV is detected inferring the quantum confinement of excitons in the GaN SQ disk. Using Al0.12Ga0.88N as a barrier for GaN quantum disk inserted in the nanocolumnar structure improves the morphological and optical properties by reducing the strain/stress, when compared with AlN/GaN nanowires. Relieving the strain/stress in quantum well heterostructures is a crucial parameter for highly effective and reliable electrical and optoelectronic devices applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available upon request.

References

  1. D. Li, K. Jiang, X. Sun, C. Guo, Adv. Opt. Photonics. 10, 43 (2018)

    Article  CAS  Google Scholar 

  2. E.N. Hurwitz, M. Asghar, A. Melton, B. Kucukgok, L. Su, M. Orocz, M. Jamil, N. Lu, I.T. Ferguson, J. Electron. Mater. 40, 513 (2011)

    Article  CAS  Google Scholar 

  3. Z. Liu, J. Ma, X. Yi, E. Guo, L. Wang, J. Wang, N. Lu, J. Li, I. Ferguson, A. Melton, Appl. Phys. Lett. 101, 261106 (2012)

    Article  Google Scholar 

  4. Y. Feng, V. Saravade, T.-F. Chung, Y. Dong, H. Zhou, B. Kucukgok, I.T. Ferguson, N. Lu, Sci. Rep. 9, 10172 (2019)

    Article  Google Scholar 

  5. Z. Liu, X. Yi, Z. Yu, G. Yuan, Y. Liu, J. Wang, J. Li, N. Lu, I. Ferguson, Y. Zhang, Sci. Rep. 6, 19537 (2016)

    Article  CAS  Google Scholar 

  6. O. Lupan, T. Pauporté, B. Viana, Adv. Mater. 22, 3298 (2010)

    Article  CAS  Google Scholar 

  7. K. Tadatomo, H. Okagawa, Y. Ohuchi, T. Tsunekawa, Y. Imada, M. Kato, T. Taguchi, Jpn J. Appl. Phys. 40, L583 (2001)

    Article  CAS  Google Scholar 

  8. W. Guo, H. Sun, B. Torre, J. Li, M. Sheikhi, J. Jiang, H. Li, S. Guo, K.-H. Li, R. Lin, A. Giugni, E. Di Fabrizio, X. Li, J. Ye, Adv. Funct. Mater. 28, 1802395 (2018)

    Article  Google Scholar 

  9. F. AlQatari, M. Sajjad, R. Lin, K.-H. Li, U. Schwingenschlögl, X. Li, Mater. Res. Express. 8, 086202 (2021)

    Article  CAS  Google Scholar 

  10. K.W. Adu, M.D. Williams, M. Reber, R. Jayasingha, H.R. Gutierrez, G.U. Sumanasekera, J. Nanotechnol. 2012, e264198 (2011)

    Google Scholar 

  11. D. Wang, C.-C. Tin, J.R. Williams, M. Park, Y.S. Park, C.M. Park, T.W. Kang, W.-C. Yang, Appl. Phys. Lett. 87, 242105 (2005)

    Article  Google Scholar 

  12. H. Tambo, S. Hasegawa, M. Uenaka, Y.K. Zhou, S. Emura, H. Asahi, Phys. Status Solidi A 208, 1576 (2011)

    Article  CAS  Google Scholar 

  13. M. Almokhtar, M. Kimura, S. Emura, H. Asahi, in Proceedings of the 12th Asia Pacific Physics Conference (APPC12) (Journal of the Physical Society of Japan, 2014)

  14. N. Abdel All, M. Almokhtar, J.E. Ghoul, J. Mater. Sci. Mater. Electron. 31, 5033 (2020)

    Article  CAS  Google Scholar 

  15. M. Almokhtar, S. Emura, Y.K. Zhou, S. Hasegawa, H. Asahi, Phys. Status Solidi C 9, 737 (2012)

    Article  CAS  Google Scholar 

  16. M. Almokhtar, S. Emura, A. Koide, T. Fujikawa, H. Asahi, J. Alloys Compd. 628, 401 (2015)

    Article  CAS  Google Scholar 

  17. M. Almokhtar, S. Emura, Y.K. Zhou, S. Hasegawa, H. Asahi, J. Phys. Condens. Matter. 23, 325802 (2011)

    Article  CAS  Google Scholar 

  18. Y. Zhou, M. Almokhtar, H. Kubo, N. Mori, S. Emura, S. Hasegawa, H. Asahi, Solid State Commun. 152, 1270 (2012)

    Article  CAS  Google Scholar 

  19. E. Silveira, J.A. Freitas, S.B. Schujman, L.J. Schowalter, J. Cryst. Growth. 310, 4007 (2008)

    Article  CAS  Google Scholar 

  20. E. Calleja, M.A. Sánchez-García, F.J. Sánchez, F. Calle, F.B. Naranjo, E. Muñoz, U. Jahn, K. Ploog, Phys. Rev. B 62, 16826 (2000)

    Article  CAS  Google Scholar 

  21. Y.S. Park, C.M. Park, D.J. Fu, T.W. Kang, J.E. Oh, Appl. Phys. Lett. 85, 5718 (2004)

    Article  CAS  Google Scholar 

  22. Z. Yu, S.L. Buczkowski, N.C. Giles, T.H. Myers, M.R. Richards-Babb, Appl. Phys. Lett. 69, 2731 (1996)

    Article  CAS  Google Scholar 

  23. L. Rigutti, F. Fortuna, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F.H. Julien, S.T. Chou, Y.T. Lin, L.W. Tu, J.-C. Harmand, Phys. Status Solidi C 7, 2233 (2010)

    Article  CAS  Google Scholar 

  24. L. Rigutti, M. Tchernycheva, A. De Luna Bugallo, G. Jacopin, F.H. Julien, F. Furtmayr, M. Stutzmann, M. Eickhoff, R. Songmuang, F. Fortuna, Phys. Rev. B 81, 045411 (2010)

    Article  Google Scholar 

  25. K.H. Lee, J.H. Na, R.A. Taylor, S.N. Yi, S. Birner, Y.S. Park, C.M. Park, T.W. Kang, Appl. Phys. Lett. 89, 023103 (2006)

    Article  Google Scholar 

  26. M. Almokhtar, N.A. All, J.Q.M. Almarashi, H. Asahi, J. Alloys Compd. 894, 162408 (2022)

    Article  CAS  Google Scholar 

  27. N. Abdel All, J. Mater. Sci. Mater. Electron. 34, 881 (2023)

    Article  CAS  Google Scholar 

  28. C. Rodríguez-Fernández, M. Almokhtar, W. Ibarra-Hernández, M.M. de Lima, A.H. Romero, H. Asahi, A. Cantarero, Nano Lett. 18, 5091 (2018)

    Article  Google Scholar 

  29. Y.-C. Tsai, C. Bayram, Sci. Rep. 9, 6583 (2019)

    Article  Google Scholar 

  30. S. Emura, H. Tani, M. Kin, Y.-K. Zhou, S. Hasegawa, H. Asahi, Phys. Status Solidi C 7, 1919 (2010)

    Article  CAS  Google Scholar 

  31. Y. Liu, Q.X. Li, L.Y. Wan, B. Kucukgok, E. Ghafari, I.T. Ferguson, X. Zhang, S. Wang, Z.C. Feng, N. Lu, Appl. Surf. Sci. 421, 389 (2017)

    Article  CAS  Google Scholar 

  32. S. Keller, G. Parish, P.T. Fini, S. Heikman, C.-H. Chen, N. Zhang, S.P. DenBaars, U.K. Mishra, Y.-F. Wu, J. Appl. Phys. 86, 5850 (1999)

    Article  CAS  Google Scholar 

  33. J.P. Ibbetson, P.T. Fini, K.D. Ness, S.P. DenBaars, J.S. Speck, U.K. Mishra, Appl. Phys. Lett. 77, 250 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors extend their appreciation to the Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, for funding this research work through Grant No. (221412014).

Funding

The author declare that they received funding during the preparation of this manuscript from Deanship of Scientific Research, Imam Mohammad Ibn Saud Islamic University (IMSIU), Saudi Arabia, through Grant No. (221412014).

Author information

Authors and Affiliations

Authors

Contributions

NAA: conceptualization, methodology, formal analysis, investigations, and writing—original draft. MJE contributed to investigation, writing—review & editing. MA: conceptualization, methodology, formal analysis, investigation, writing—review & edit.

Corresponding author

Correspondence to Naglaa AbdelAll.

Ethics declarations

Conflict of interest

The author declares that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Research involving human and animal participants

This article does not contain any involving animals and human participants performed.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AbdelAll, N., ElGhoul, J. & Almokhtar, M. Low temperature photoluminescence study of AlxGa1−xN/GaN/AlxGa1−xN heterostructure nanocolumns. J Mater Sci: Mater Electron 34, 1581 (2023). https://doi.org/10.1007/s10854-023-11003-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-11003-7

Navigation