Skip to main content
Log in

Facile synthesis of novel YbFeO3–BiFeO3 composite for highly sensitive ppb-level acetone sensing at low temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

High sensitivity and low detection limit are crucial parameters in evaluating the performance of gas sensors, particularly in detecting trace amounts of acetone gas in human respiration for diabetes monitoring purposes. In this study, a composite of YbFeO3–BiFeO3 (YFO–BFO) was prepared using a facile method involving the calcination of a mixture of Yb2O3 and BiFeO3, followed by acid treatment. It is revealed that the introduction of YbFeO3 significantly improves the acetone gas sensitivity and reduces the operating temperature. At an optimized operating temperature of 200 °C, the response of YFO–BFO to 10 ppm acetone reaches 32.6, which is 16.6 times higher than that of BiFeO3 at the optimized operating temperature of 280 °C. Moreover, the response to 400 ppb of acetone still has 7 even at the low temperature of 160 °C. YFO–BFO also exhibits a low limit of detection (25 ppb), good selectivity and stability. The excellent gas-sensing performance of YFO–BFO is mainly attributed to the formation of a p-p heterojunction and the increased Fe2+/Fe3+ redox pairs. This work offers a novel approach for enhancing the acetone sensing properties of BiFeO3-based gas sensors, which may lead to the advancement of acetone sensors for the diagnosis of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets and analyses generated during the current study are available from the corresponding author upon reasonable request.

References

  1. X. Sun, K. Shao, T. Wang, Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal. Bioanal. Chem. 408, 2759–2780 (2016)

    Article  CAS  Google Scholar 

  2. E. Baysak, S. Yuvayapan, A. Aydogan, G. Hizal, Calix pyrrole-decorated carbon nanotubes on paper for sensing acetone vapor. Sens. Actuators B Chem. 258, 484–491 (2018)

    Article  CAS  Google Scholar 

  3. C. Whittle, S. Fakharzadeh, J. Eades, G. Preti, Human breath odors and their use in diagnosis. Ann. NY Acad. Sci. 1098, 252–266 (2007)

    Article  CAS  Google Scholar 

  4. M. Righettoni, A. Tricoli, S. Gass, A. Schmid, A. Amann, S.E. Pratsinis, Breath acetone monitoring by portable Si: WO3 gas sensors. Anal. Chim. Acta. 73, 869–875 (2012)

    Google Scholar 

  5. V. Amiri, H. Roshan, A. Mirzaei, G. Neri, A.I. Ayesh, Nanostructured metal oxide-based acetone gas sensors. Sensors. 20, 3096 (2020)

    Article  CAS  Google Scholar 

  6. X.Y. Kou, F.Q. Meng, K. Chen, T.S. Wang, P. Sun, F.M. Liu, X. Yan, Y.F. Sun, F.M. Liu, K. Shimanoe, G.Y. Lu, High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuators B Chem. 320, 128292 (2020)

    Article  CAS  Google Scholar 

  7. Q. Wang, X. Cheng, Y.R. Wang, Y.F. Yang, Q. Su, J.P. Li, B.X. An, Y.B. Luo, Z.K. Wu, E.Q. Xie, Sea urchins-like WO3 as a material for resistive acetone gas sensors. Sens. Actuators B Chem. 355, 131262 (2022)

    Article  CAS  Google Scholar 

  8. J.X. Wang, J. Yang, N. Han, X.Y. Zhou, S.Y. Gong, J.F. Yang, P. Hu, Y.F. Chen, Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Mater. Des. 121, 69–76 (2017)

    Article  CAS  Google Scholar 

  9. S.D. Zhang, M.J. Yang, K.Y. Liang, A. Turak, B.X. Zhang, D. Meng, C.X. Wang, F.D. Qu, W.L. Cheng, M.H. Yang, An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuators B Chem. 290, 59–67 (2019)

    Article  CAS  Google Scholar 

  10. T.T. Zhou, T. Zhang, J.N. Deng, R. Zhang, Z. Lou, L.L. Wang, P-type Co3O4 nanomaterials-based gas sensor: Preparation and acetone sensing performance. Sens. Actuators B Chem. 242, 369–377 (2017)

    Article  CAS  Google Scholar 

  11. S. Ganguly, R. Jha, P.K. Guha, Synthesis of CuO nanoflowers and their application towards inflammable gas sensing. J. Electron. Mater. 49, 5070–5076 (2020)

    Article  CAS  Google Scholar 

  12. C.Y. Li, P.G. Choi, K. Kim, Y. Masuda, High performance acetone gas sensor based on ultrathin porous NiO nanosheet. Sens. Actuators B Chem. 367, 132143 (2022)

    Article  CAS  Google Scholar 

  13. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, H. Nilsson, W. Xiong, B. Xu, Y. Li, H. Radamson, Silicon Nanowires for Gas sensing: a review. Nanomaterials. 10, 2215 (2020)

    Article  CAS  Google Scholar 

  14. M. Akbari-Saatlu, M. Procek, C. Mattsson, G. Thungström, T. Törndahl, B. Li, J. Su, W.J. Xiong, H. Radamson, Nanometer-thick ZnO/SnO2 heterostructures grown on alumina for H2S sensing. ACS Appl. Nano Mater. 5, 6954–6963 (2022)

    Article  CAS  Google Scholar 

  15. Y. Masuda, Recent advances in SnO2 nanostructure based gas sensors. Sens. Actuators B Chem. 364, 131876 (2022)

    Article  CAS  Google Scholar 

  16. F.C. Yang, F.Y. Wang, Z.G. Guo, Characteristics of binary WO3@CuO and ternary WO3@PDA@CuO based on impressive sensing acetone odor. J. Colloid Interfac. Sci. 524, 32–41 (2018)

    Article  CAS  Google Scholar 

  17. R.R. Jin, Y.R. Jiang, L.P. Zhao, T.S. Wang, X.M. Liu, F.M. Liu, X. Yan, P. Sun, G. Lu, High sensitivity and low detection limit of acetone sensor based on Ru-doped Co3O4 flower-like hollow microspheres. Sens. Actuators B Chem. 363, 131839 (2022)

    Article  CAS  Google Scholar 

  18. G.H. Zhang, X.Y. Deng, P.Y. Wang, X.L. Wang, Y. Chen, H.L. Ma, D.J. Geng, Morphology controlled syntheses of Cr doped ZnO single-crystal nanorods for acetone gas sensor. Mater. Lett. 165, 83–86 (2016)

    Article  Google Scholar 

  19. A. Prakash, B. Jalan, Wide bandgap perovskite oxides with high room-temperature electron mobility. Adv. Mater. Interfac. 6, 1900479 (2019)

    Article  Google Scholar 

  20. P. Bulemo, I.D. Kim, Recent advances in ABO3 perovskites: their gas-sensing performance as resistive-type gas sensors. J. Korean Ceram. Soc. 57, 24–39 (2019)

    Article  Google Scholar 

  21. Y.K. Park, K.H. Chung, I. Park, S.C. Kim, S.J. Kim, S.C. Jung, Photocatalytic degradation of 1,4-dioxane using liquid phase plasma on visible light photocatalysts. J. Hazard. 399, 123087 (2020)

    Article  CAS  Google Scholar 

  22. T.G. You, Y. Shuai, W.B. Luo, N. Du, D. Bürger, I. Skorupa, R. Hübner, S. Henker, C. Mayr, R. Schüffny, T. Mikolajick, O.G. Schmidt, H. Schmidt, Exploiting memristive BiFeO3 bilayer structures for compact sequential logics. Adv. Funct. Mater. 24, 3357–3365 (2020)

    Article  Google Scholar 

  23. L.F. Wang, H. Ma, L. Chang, C. Ma, G.L. Yuan, J.L. Wang, T. Wu, Ferroelectric BiFeO3 as an oxide dye in highly tunable mesoporous all-oxide photovoltaic heterojunctions. Small. 13, 1602355 (2017)

    Article  Google Scholar 

  24. A. Poghossian, H. Abovian, P. Avakian, V. Mkrtchian, M. Haroutunian, Bismuth ferrites: new materials for semiconductor gas sensors. Sens. Actuators B 9, 545–549 (1991)

    Article  Google Scholar 

  25. S. Neogi, R. Ghosh, Origin of irreversible to reversible transition in acetone detection for Y-doped BiFeO3 perovskite. J. Appl. Phys. 128, 144501 (2020)

    Article  CAS  Google Scholar 

  26. Q.C. Yu, Y.C. Zhang, Y. Xu, Hierarchical hollow BiFeO3 microcubes with enhanced acetone gas sensing performance. Dalton Trans. 50, 6702 (2021)

    Article  CAS  Google Scholar 

  27. X.L. Liu, J. Li, L.L. Guo, G.D. Wang, Highly sensitive acetone gas sensors based on erbium-doped bismuth ferrite nanoparticles. Nanomaterials. 12, 3679 (2022)

    Article  CAS  Google Scholar 

  28. S.L. Peng, M. Ma, W.J. Yang, Z.Q. Wang, Z.H. Wang, J. Bi, J.T. Wu, Acetone sensing with parts-per-billion limit of detection using a BiFeO3-based solid solution sensor at the morphotropic phase boundary, Sens. Actuators B Chem. 313, 128060 (2020)

    Article  CAS  Google Scholar 

  29. D.M. Zhang, M.P. Chen, H.Y. Zou, Y.M. Zhang, J.C. Hu, H.P. Wang, B.Y. Zi, J. Zhang, Z.Q. Zhu, L.L. Duan, Microwave-assisted synthesis of porous and hollow α-Fe2O3/LaFeO3 nanostructures for acetone gas sensing as well as photocatalytic degradation of methyl blue. Nanotechnology. 31, 215601 (2020)

    Article  CAS  Google Scholar 

  30. H.L. Wu, F.Q. Meng, X.Q. Gong, W. Tao, L.P. Zhao, T.S. Wang, F.M. Liu, X. Yan, P. Sun, G.Y. Lu, A solution to boost acetone sensing performance of perovskite oxides chemiresistors: In-situ derived p-p heterostructures. Sens. Actuators B Chem. 378, 133092 (2023)

    Article  CAS  Google Scholar 

  31. F.P. Meng, J.Y. Hu, C. Liu, Y.M. Tan, Y. Zhang, Highly sensitive and low detection limit of acetone gas sensor based on porous YbFeO3 nanocrystalline. Chem. Phys. Lett. 780, 138925 (2021)

    Article  CAS  Google Scholar 

  32. S. Lakshmi, I. Banu, Multiferroism and magnetoelectric coupling in single-phase yb and X (X = nb, Mn, Mo) co-doped BiFeO3 ceramics. J. Sol-Gel Sci. Technol. 89, 713–721 (2019)

    Article  CAS  Google Scholar 

  33. J.Q. Yang, B. Jiang, X. Wang, C. Wang, Y.F. Sun, H. Zhang, K. Shimanoe, G.Y. Lu, MOF-derived porous NiO/NiFe2O4 nanocubes for improving the acetone detection. Sens. Actuators B Chem. 366, 131985 (2022)

    Article  CAS  Google Scholar 

  34. C. Su, L. Zhang, Y.T. Han, C. Ren, M. Zeng, Z.H. Zhou, Y.J. Su, N.T. Hu, H. Wei, Z. Yang, Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sens. Actuators B Chem. 304, 127347 (2020)

    Article  CAS  Google Scholar 

  35. M. Siemons, A. Leifert, U. Simon, Preparation and gas sensing characteristics of nanoparticulate p-type semiconducting LnFeO3 and LnCrO3 materials. Adv. Funct. Mater. 17, 2189–2197 (2007)

    Article  CAS  Google Scholar 

  36. A. Šutka, A. Kārlis, Spinel ferrite oxide semiconductor gas sensors. Sens. Actuators B Chem. 222, 95–105 (2016)

    Article  Google Scholar 

  37. Z.K. Chen, C. Yu, W.W. Bai, W. Ye, J. Wang, J.L. Wei, Y. Wang, J.H. He, J.M. Lu, Surface functionalization of ion-in-conjugation polymer sensors for humidity-independent gas detection at room temperature. Sens. Actuators B Chem. 372, 132654 (2022)

    Article  CAS  Google Scholar 

  38. G. Huang, Q.H. Yang, Q. Xu, S.H. Yu, H.L. Jiang, Polydimethylsiloxane coating for a palladium/MOF composite: highly improved catalytic performance by surface hydrop-hobization. Angew Chem. Int. Ed. 55, 7379 (2016)

    Article  CAS  Google Scholar 

  39. B.Q. Wang, Q. Yu, S.F. Zhang, T.S. Wang, P. Sun, X.H. Chuai, G.Y. Lu, Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sens. Actuators B Chem. 258, 1215–1222 (2018)

    Article  CAS  Google Scholar 

  40. Y.P. Chen, H.W. Qin, X.F. Wang, L. Li, J.F. Hu, Acetone sensing properties and mechanism of nano-LaFeO3 thick-films. Sens. Actuators B Chem. 235, 56–66 (2016)

    Article  CAS  Google Scholar 

  41. K. Shingange, H. Swart, G. Mhlongo, Ultrafast detection of low acetone concentration displayed by au loaded LaFeO3 nanobelts owing to synergetic effects of porous 1D morphology and catalytic activity of au nanoparticles. ACS Omega. 21, 19018–19029 (2019)

    Article  Google Scholar 

  42. L. Ma, S.Y. Ma, X.F. Shen, T.T. Wang, X.H. Jiang, Q. Chen, Z. Qiang, H.M. Yang, H. Chen, PrFeO3 hollow nanofibers as a highly efficient gas sensor for acetone detection. Sens. Actuators B Chem. 255, 2546–2554 (2018)

    Article  CAS  Google Scholar 

  43. L. Li, H.W. Qin, L. Zhang, J.F. Hu, Ultrasensitive sensing performances to sub-ppb level acetone for Pd-functionalized SmFeO3 packed powder sensors. RSC Adv. 6, 60967 (2016)

    Article  CAS  Google Scholar 

  44. Y. Cao, C. Zhou, H. Qin, High-performance acetone gas sensor based on ferrite–DyFeO3. J. Mater. Sci. 55, 16300–16310 (2020)

    Article  CAS  Google Scholar 

  45. P.P. Zhang, H.W. Qin, W. Lv, H. Zhang, J.F. Hu, Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations. Sens. Actuators B Chem. 246, 9–19 (2017)

    Article  Google Scholar 

  46. T. Tong, J.G. Chen, D.R. Jin, J.R. Cheng, Preparation and gas sensing characteristics of BiFeO3 crystallites. Mater. Lett. 197, 160–162 (2017)

    Article  CAS  Google Scholar 

  47. Y. Zhang, H. Xu, S. Dong, A fast response and recovery acetone gas sensor based on BiFeO3 nanomaterials with high sensitivity and low detection limit. J. Mater. Sci: Mater. Electron. 29, 2193–2200 (2018)

    CAS  Google Scholar 

  48. S. Neogi, R. Ghosh, Ion-dipole interaction for selective detection of acetone by perovskite BiFeO3 chemi-resistive sensor. Anal. Chim. Acta. 1206, 339788 (2022)

    Article  CAS  Google Scholar 

  49. S. Neogi, R. Ghosh, Behavioral remodeling of perovskite BiFeO3 by Ag-doping strategies for enhanced and ppb level acetone sensing performance: an advanced enlightenment for selectivity and sensing mechanism. Appl. Mater. Today. 29, 101611 (2022)

    Article  Google Scholar 

  50. M. Ma, L. Chen, L. Peng, Y. Peng, J. Bi, D.J. Gao, J.T. Wu, Carrier and oxygen vacancy engineering of aliovalent ion modified BiFeO3 and their gas sensing properties. Sens. Actuators B Chem. 370, 132400 (2022)

    Article  CAS  Google Scholar 

  51. H.X. Xu, J.H. Xu, H.B. Li, W.Z. Zhang, Y.M. Zhang, Z.Y. Zhai, Highly sensitive ethanol and acetone gas sensors with reduced working temperature based on Sr-doped BiFeO3 nanomaterial. J. Mater. Res. Technol. 17, 1955–1963 (2022)

    Article  CAS  Google Scholar 

  52. H. Chen, S. Ao, G.D. Li, Q. Gao, X.X. Zou, C.D. Wei, Enhanced sensing performance to toluene and xylene by constructing NiGa2O4-NiO heterostructures. Sens. Actuators B Chem. 282, 331–338 (2019)

    Article  CAS  Google Scholar 

  53. J. Suh, W. Sohn, Y. Shim, P-p heterojunction of nickel oxide-decorated cobalt oxide nanorods for enhanced sensitivity and selectivity toward volatile organic compounds. ACS Appl. Mater. Interfac. 10, 1050–1058 (2018)

    Article  CAS  Google Scholar 

  54. J. Song, L. Zhao, S. Huang, X.F. Yan, Q.Y. Qiu, Y.L. Zhao, L. Zhu, Y.H. Qiang, H.S. Li, G.R. Li, A p-p + homojunction-enhanced hole transfer in inverted planar perovskite solar cells. Chem. Sus. Chem. 14, 1396 (2021)

    Article  CAS  Google Scholar 

  55. H.M. Ji, L. Zhang, R. Zhang, Gas sensitive performance and mechanism of multiferroic BiFeO3 under thermal-magnetic synergetic excitation. Inorg. Chem. Commun. 150, 110491 (2023)

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Shanghai Pujiang Program (Grant No. 21PJD079), Natural Science Foundation of Shanghai (Grant No. 21ZR1472700).

Author information

Authors and Affiliations

Authors

Contributions

XYC: Investigation, Methodology, Formal analysis, Writing-original draft. ZQH: Supervision, Validation, Writing—review and editing. CG: Supervision, Validation, Writing—review and editing. NM: Conceptualization, Resources, Formal analysis, Writing—review and editing.

Corresponding authors

Correspondence to Chong Geng or Nan Ma.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 366.2 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Hua, Z., Geng, C. et al. Facile synthesis of novel YbFeO3–BiFeO3 composite for highly sensitive ppb-level acetone sensing at low temperature. J Mater Sci: Mater Electron 34, 1588 (2023). https://doi.org/10.1007/s10854-023-10990-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10990-x

Navigation