Skip to main content

Advertisement

Log in

Hydrothermal synthesis of La2O3–ZnO nanocomposites as electrode material for asymmetric supercapacitor applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bimetallic nano composite has gained more interest than monometallic nano particle due to their improved electrochemical characteristics. In the present work hydrothermally synthesised bi metallic nano composites (La2O3–ZnO) are studied for energy storage application. The conducted physico-chemical characterization results strongly revealed the phase formation of La2O3–ZnO nanocomposite material. The cyclic voltammetry results estimate a maximum specific capacitance of 615 F/g at 5 mV/s for the prepared composite. The electrochemical impedance spectroscopy establishes the solution and charges transfer resistance as 0.53 Ω and 0.309 Ω, respectively. The galvanostatic charge–discharge studies reveal prolonged charging and discharging and better rate capability. The cyclic stability of the La2O3–ZnO nanocomposites achieved higher cyclic capacity and capacitive retention of 85% even after 2000 cycles. The nanocomposites (La2O3–ZnO) exhibited good electrochemical performance in asymmetric supercapacitor device application with superior energy (26.53) wh/kg and power density (1350) w/kg with better cyclic stability and capacitive retention of 77.5% even after 1000 cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during the current study are available from the corresponding author on reasonable request.

References

  1. A. Muzaffar, M. BasheerAhamed, Iron molybdate and manganese dioxide microrods as a hybrid structure for high-performance supercapacitor applications. Ceram. Int. 45, 4009–4015 (2019)

    Article  CAS  Google Scholar 

  2. G. Ravi Kumar, C. Guozhong, R.P. Manimuthu, Sandwich assembly of sulfonated poly (ether sulfone) with sulfonated multiwalled carbon nanotubes as an efficient architecture for enhanced electrolyte performance in H2/O2 fuel cells. Int. J. Energy Res. 46(3), 2567–2584 (2022)

    Article  CAS  Google Scholar 

  3. G. Maheshwaran, G. Seethalakshmi, V.K. Devi, L.M. VenkataKrishna, M.R. Prabhu, M.K. Kumar, S. Sudhahar, Synergistic effect of Cr2O3 and Co3O4 nanocomposite electrode for high performance supercapacitor applications. Current Appl. Phys. 36, 63–70 (2022)

    Article  Google Scholar 

  4. M. Racik, A. Manikandan, M. Mahendiran, J. Madhavan, M.V.A. Raj, M.G. Mohamed, T. Maiyalagan, Hydrothermal synthesis and characterization studies of α-Fe2O3/MnO2 nanocomposites for energy storage supercapacitor application. Ceram. Int. 46(5), 6222–6233 (2020)

    Article  Google Scholar 

  5. A. Muzaffar, M.B. Ahamed, K. Deshmukh, J. Thirumalai, A review on recent advances in hybrid supercapacitors: design, fabrication and applications. Renew. Sustain. Energy Rev. 101, 123–145 (2019)

    Article  CAS  Google Scholar 

  6. G. Maheshwaran, C. Selvi, R. Kaliammal, M.R. Prabhu, M.K. Kumar, S. Sudhahar, Exploration of Cr2O3–NiO nanocomposite as a superior electrode material for supercapacitor applications. Mater. Lett. 300, 130191 (2021)

    Article  CAS  Google Scholar 

  7. K.M. Racik, S. Anand, S. Muniyappan, S. Nandhini, S. Ramesh Kumar, D. Mani, P. Karuppasamy, M.S. Pandian, P. Ramasamy, Preparation of CoFe2O4/SiO2 nanocomposite as potential electrode materials for supercapacitors. Inorg. Chem. Commun. 146, 110036 (2022)

    Article  Google Scholar 

  8. P. Makkar, N.N. Ghosh, High-performance all-solid-state flexible asymmetric supercapacitor device based on a Ag–Ni nanoparticle-decorated reduced graphene oxide nanocomposite as an advanced cathode material. Ind. Eng. Chem. Res. 60(4), 1666–1674 (2021)

    Article  CAS  Google Scholar 

  9. A.C. Dhanemozhi, V. Rajeswari, S. Sathyajothi, Green synthesis of zinc oxide nanoparticle using green tea leaf extract for supercapacitor application. Mater. Today 4(2), 660–667 (2017)

    Article  Google Scholar 

  10. S. Karthikeyan, P. Sathya, M.R. Chandran, V.T. Srisuvetha, M. Shkir, E.E.S. Massoud, One-pot achievement of La2O3/MnO2 nanocomposites as efficient electrodes for asymmetric supercapacitors. J. Mater. Sci. 34(5), 412 (2023)

    CAS  Google Scholar 

  11. H. Wang, J. Lin, Z.X. Shen, Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. 1(3), 225–255 (2016)

    Google Scholar 

  12. S. Khamlich, Z. Abdullaeva, J.V. Kennedy, M. Maaza, High performance symmetric supercapacitor based on zinc hydroxychloride nanosheets and 3D graphene-nickel foam composite. Appl. Surf. Sci. 405, 329–336 (2017)

    Article  CAS  Google Scholar 

  13. K.M. Racik, A. Manikandan, M. Mahendiran, P. Prabakaran, J. Madhavan, M.V.A. Raj, Fabrication of manganese oxide decorated copper oxide (MnO2/CuO) nanocomposite electrodes for energy storage supercapacitor devices. Physica E 119, 114033 (2020)

    Article  Google Scholar 

  14. Z. Lourene, T. Leizhai, J. Thomas, Super capacitor electrode Materials nano structure from 0 to 3 dimension. J. Energy Environ. Sci. 8, 702–730 (2015)

    Article  Google Scholar 

  15. Z.S. Iro, C. Subramani, S.S. Dash, A brief review on electrode materials for supercapacitor. Int. J. Electrochem. Sci. 11(12), 10628–10643 (2016)

    Article  CAS  Google Scholar 

  16. M. Majumder, R.B. Choudhary, A.K. Thakur, C.S. Rout, G. Gupta, Rare earth metal oxide (RE2O3, RE=Nd, Gd, and Yb,) incorporated polyindole composites gravimetric and volumetric capacitive performance for super capacitor application. N. J. Chem. 42(7), 5295–5308 (2018)

    Article  CAS  Google Scholar 

  17. D.B. Bailmare, P. Tripathi, A.D. Deshmukh, B.K. Gupta, Designing of two dimensional lanthanum cobalt hydroxide engineered high performance supercapacitor for longer stability under redox active electrolyte. Sci. Rep. 12(1), 3084 (2022)

    Article  CAS  Google Scholar 

  18. L. Li, H. Peng, Y. Kang, Y. Hao, F. Liu, H. Xin, H. Kang, W. Wang, Z. Lei, Rare-earth metal-organic framework-derived La2O3/NixPy nanoparticles embedded in nitrogen-doped porous carbon as efficient electrocatalysts for the oxygen evolution reaction. ACS Appl. Nano Mater. 6(6), 4349–4359 (2023)

    Article  CAS  Google Scholar 

  19. N. Arjun, G.T. Pan, T.C. Yang, The exploration of Lanthanum based perovskites and their complementary electrolytes for the supercapacitor applications. Results Phys. 7, 920–926 (2017)

    Article  Google Scholar 

  20. J. Chen, Y. Wang, Z. Gu, J. Huang, W. He, P. Liu, Rational design of hierarchical yolk-double shell Fe@NCNs/MnO2 via thermal-induced phase separation toward wideband microwave absorption. Carbon 2023(204), 305–314 (2023)

    Article  Google Scholar 

  21. P. Liu, S. Gao, G. Zhang, Y. Huang, W. You, R. Che, Hollow engineering to Co@ N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 31(27), 2102812 (2021)

    Article  CAS  Google Scholar 

  22. P. Liu, G. Zhang, H. Xu, S. Cheng, Y. Huang, B. Ouyang, Y. Qian, R. Zhang, R. Che, Synergistic dielectric-magnetic enhancement via phase-evolution engineering and dynamic magnetic resonance. Adv. Funct. Mater. 2023(13), 2211298 (2023)

    Article  Google Scholar 

  23. N. Rani, M. Saini, S. Yadav, K. Gupta, K. Saini, M. Khanuja, High performance super capacitor based on rod shaped ZnO nano structure electrode. AIP Conf. Proc. 2276, 020042 (2020)

    Article  Google Scholar 

  24. A.C. Dhanemozhi, V. Rajeswari, R. Jayavel, Synthesis and characterization of graphene-zinc oxide nanocomposite electrode material for supercapacitor applications. Mater. Today 4(2), 645–652 (2017)

    Article  Google Scholar 

  25. K. Pradeeswari, A. Venkatesan, P. Pandi, K. Karthik, K.H. Krishna, R.M. Kumar, Study on the electrochemical performance of ZnO nanoparticles synthesized via non-aqueous sol-gel route for supercapacitor applications. Mater. Res. Express 6(10), 105525 (2019)

    Article  CAS  Google Scholar 

  26. S. Kasap, I.I. Kaya, S. Repp, E. Erdem, Emre Erdem battery like super capacitor utilized by graphene foam and zinc oxide electrode (ZnO) electrodes induced by structural defects. Nanoscale Adv. 1(7), 2586–2597 (2019)

    Article  CAS  Google Scholar 

  27. C. Sasirekha, S. Arumugam, G. Muralidharan, Influence of calcination temperature on the electrochemical performance of Sol–gel-derived ZnO/C nanocomposite electrodes. Appl. Phys. A 127(2), 1–11 (2021)

    Article  Google Scholar 

  28. T. Liu, S. Cheng, L. Li, X. Ji, G. Nam, X. Yan, M. Liu, Rational design of ZnO-based aqueous batteries for safe, fast, and reliable energy storage: accomplishment of stable K+ storage/release. Chem. Eng. J. 456, 141098 (2023)

    Article  CAS  Google Scholar 

  29. M. Ahmad, C. Pan, J. Zhu, Investigation of hydrogen storage capabilities of ZnO-based nanostructures. J. Phys. Chem. C 114(6), 2560–2565 (2010)

    Article  CAS  Google Scholar 

  30. S. Kaskun, Y. Akinay, M. Kayfeci, Improved hydrogen adsorption of ZnO doped multi-walled carbon nanotubes. Int. J. Hydrogen Energy 45(60), 34949–34955 (2020)

    Article  CAS  Google Scholar 

  31. H. Pan, J. Luo, H. Sun, Y. Feng, C. Poh, J. Lin, Hydrogen storage of ZnO and Mg doped ZnO nanowires. Nanotechnology 17(12), 2963 (2006)

    Article  CAS  Google Scholar 

  32. T.E. Balaji, H. Tanaya Das, T. Maiyalagan, Recent trends in bimetallic oxides and their composites as electrode materials for supercapacitor applications. ChemElectroChem 8(10), 1723–1746 (2021)

    Article  CAS  Google Scholar 

  33. V. Muthulakshmi, M. Balaji, M. Sundrarajan, Ionic liquid mediated morphologically improved lanthanum oxide nanoparticles by Andrographis paniculata leaves extract and its biomedical applications. J. Rare Earths 38, 281–291 (2020)

    Article  Google Scholar 

  34. S. Yuvaraj, A.C. Fernandez, M. Sundararajan, C.S. Dash, P.J.C.I. Sakthivel, Hydrothermal synthesis of ZnO–CdS nanocomposites: structural, optical and electrical behavior. Ceram. Int. 46(1), 391–402 (2020)

    Article  CAS  Google Scholar 

  35. I. Ahmad, M.A. Jamal, M. Iftikhar, A. Ahmad, S. Hussain, H. Asghar, M. Saeed, A.B. Yousaf, R.R. Karri, N.S. Al-Kadhi, M. Ouladsmane, Lanthanum-zinc binary oxide nanocomposite with promising heterogeneous catalysis performance for the active conversion of 4-nitrophenol into 4-aminophenol. Coatings 11(5), 537 (2021)

    Article  CAS  Google Scholar 

  36. G. Maheshwaran, M. MalaiSelvi, R. Selva Muneeswari, A. Nivedhitha Bharathi, M. Krishna Kumar, S. Sudhahar, Green synthesis of lanthanum oxide nanoparticles using Moringa oleifera leaves extract and its biological activities. Adv. Powder Technol. 32(6), 1963–1971 (2021)

    Article  CAS  Google Scholar 

  37. M.S. Yadav, N. Singh, S.M. Bobade, Zinc oxide nanoparticles and activated charcoal-based nanocomposite electrode for supercapacitor application. Ionics 24(11), 3611–3630 (2018)

    Article  CAS  Google Scholar 

  38. E. Füglein, D. Walter, Thermal analysis of lanthanum hydroxide. J. Therm. Anal. Calorim. 110(1), 199–202 (2012)

    Article  Google Scholar 

  39. M. Kouthaman, P. Arjunan, K. Kannan, R. Subadevi, V. Kumaran, M. Sivakumar, Titanium deputized layered O3-type NaFe9/20Cr9/20Ti1/10O2 cathode material for sodium-ion batteries. Mater. Lett. 285, 129119 (2021)

    Article  CAS  Google Scholar 

  40. M.I. Khalil, M.M. Al-Qunaibit, A.M. Al-Zahem, J.P. Labis, Synthesis and characterization of ZnO nanoparticles by thermal decomposition of a curcumin zinc complex. Arab. J. Chem. 7(6), 1178–1184 (2014)

    Article  CAS  Google Scholar 

  41. N. Sulaiman, Y. YulizarD, O.B. Apriandanu, Eco-friendly method for synthesis of La2O3 nanoparticles using physalis angulata leaf extract. AIP Conf. Proc. 4, 020105 (2018)

    Article  Google Scholar 

  42. L. Lin, X. Yao, L. Ma, Morphology-controllable synthesis of one-dimensional ZnO nanostructures on graphene oxide-based electrode and its enhanced electrochemical performance for supercapacitor application. Int. J. Electrochem. Sci. 15(8), 7763–7773 (2020)

    Article  Google Scholar 

  43. M. Ghiasi, A. Malekzadeh, Synthesis, characterization and photocatalytic properties of lanthanum oxy-carbonate, lanthanum oxide and lanthanum hydroxide nanoparticles. Superlatt. Microstruct. 77, 295–304 (2015)

    Article  CAS  Google Scholar 

  44. E. Samuel, B. Joshi, Y.I. Kim, A. Aldalbahi, M. Rahaman, S.S. Yoon, ZnO/MnOx nanoflowers for high-performance supercapacitor electrodes. ACS Sustain. Chem. Eng. 8(9), 3697–3708 (2020)

    Article  CAS  Google Scholar 

  45. K. Velsankar, A. Venkatesan, P. Muthumari, S. Suganya, S. Mohandoss, S. Sudhahar, Green inspired synthesis of ZnO nanoparticles and its characterizations with biofilm, antioxidant, anti-inflammatory, and anti-diabetic activities. J. Mol. Struct. 1255, 132420 (2022)

    Article  Google Scholar 

  46. G. Maheshwaran, R.S. Muneeswari, A.N. Bharathi, M.K. Kumar, S. Sudhahar, Eco-friendly synthesis of lanthanum oxide nanoparticles by Eucalyptus globulus leaf extracts for effective biomedical applications. Mater. Lett. 283, 128799 (2021)

    Article  CAS  Google Scholar 

  47. X. Xiao, B. Han, G. Chen, L. Wang, Y. Wang, Preparation and electrochemical performances of carbon sphere@ ZnO core–shell nanocomposites for supercapacitor applications. Sci. Rep. 7(1), 40167 (2017)

    Article  CAS  Google Scholar 

  48. A. Soam, R. Kumar, C. Mahender, M. Singh, D. Thatoi, R.O. Dusane, Development of paper-based flexible supercapacitor: bismuth ferrite/graphene nanocomposite as an active electrode material. J. Alloys Compd. 813, 152145 (2020)

    Article  CAS  Google Scholar 

  49. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, Supercapacitor studies on NiO nanoflakes synthesized through microwave route. ACS Mater. Interfaces 6, 2188–2196 (2013)

    Article  Google Scholar 

  50. A. Numan, N. Duraisamy, F.S. Omar, Y.K. Mahipal, K. Ramesh, S. Ramesh, Enhanced electrochemical performance of cobalt oxide nanocube intercalated reduced graphene oxide for supercapacitor application. RSC Adv. 6(41), 34894–34902 (2016)

    Article  CAS  Google Scholar 

  51. J. Xu, L. Gao, J. Cao, W. Wang, Z. Chen, Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material. Electrochim. Acta 56(2), 732–736 (2010)

    Article  CAS  Google Scholar 

  52. J. Zhang, Z. Zhang, Y. Jiao, H. Yang, Y. Li, J. Zhang, P. Gao, The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99–105 (2019)

    Article  CAS  Google Scholar 

  53. T.T. Ghogare, A.C. Lokhande, R.B. Pujari, C.D. Lokhande, Lanthanum sulfide/graphene oxide composite thin films and their supercapacitor application. SN Appl. Sci. 1(1), 1–7 (2018)

    Google Scholar 

  54. M. Isacfranklin, R. Yuvakkumar, G. Ravi, M. Pannipara, A.G. Al-Sehemi, CuCoO2 electrodes for supercapacitor applications. Mater. Lett. 296, 129930 (2021)

    Article  CAS  Google Scholar 

  55. C. Sasirekha, S. Arumugam, G. Muralidharan, Green synthesis of ZnO/Carbon (ZnO/C) as an electrode material for symmetric supercapacitor devices. Appl. Surf. Sci. 449, 521–527 (2018)

    Article  CAS  Google Scholar 

  56. E.M. Abebe, M. Ujihara, Influence of temperature on ZnO/Co3O4 nanocomposites for high energy storage supercapacitors. ACS Omega 6(37), 23750–23763 (2021)

    Article  CAS  Google Scholar 

  57. S. Asaithambi, P. Sakthivel, M. Karuppaiah, R. Yuvakkumar, D. Velauthapillai, T. Ahamad, M.M. Khan, M.K. Mohammed, N. Vijayaprabhu, G. Ravi, The bifunctional performance analysis of synthesized Ce doped SnO2/g-C3N4 composites for asymmetric supercapacitor and visible light photocatalytic applications. J. Alloy. Compd. 866, 158807 (2021)

    Article  CAS  Google Scholar 

  58. M. Isacfranklin, G. Ravi, R. Yuvakkumar, P. Kumar, D. Velauthapillai, B. Saravanakumar, M. Thambidurai, C. Dang, Urchin like NiCo2O4/rGO nanocomposite for high energy asymmetric storage applications. Ceram. Int. 46(10), 16291–16297 (2020)

    Article  CAS  Google Scholar 

  59. S. Nandhini, G. Muralidharan, Co3S4-CoS/rGO hybrid nanostructure: promising material for high-performance and high-rate capacity supercapacitor. J. Solid State Electrochem. 25, 465–477 (2021)

    Article  CAS  Google Scholar 

  60. I.M. Babu, J.J. William, G. Muralidharan, Ordered mesoporous Co3O4/CMC nanoflakes for superior cyclic life and ultra high energy density supercapacitor. Appl. Surf. Sci. 480, 371–383 (2019)

    Article  CAS  Google Scholar 

  61. Y. Li, B. Guan, A. Maclennan, Y. Hu, D. Li, J. Zhao, Y. Wang, H. Zhang, Porous waxberry-like MnO2/La2O3 microspheres for high performance asymmetric supercapacitor. Electrochim. Acta. 241, 395–405 (2017)

    Article  CAS  Google Scholar 

  62. D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, Porous lanthanum doped NiO microspheres for supercapacitor application. J. Electroanal. Chem. 682, 37–44 (2012)

    Article  CAS  Google Scholar 

  63. R. Rajagopal, K.S. Ryu, Facile hydrothermal synthesis of lanthanum oxide/hydroxide nanoparticles anchored reduced graphene oxide for supercapacitor applications. J. Ind. Eng. Chem. 60, 441–450 (2018)

    Article  CAS  Google Scholar 

  64. I. Shaheen, K.S. Ahmad, C. Zequine, R.K. Gupta, A.G. Thomas, M.A. Malik, Facile ZnO-based nanomaterial and its fabrication as a supercapacitor electrode: synthesis, characterization and electrochemical studies. RSC Adv. 11(38), 23374–23384 (2021)

    Article  CAS  Google Scholar 

  65. F. Ahmed, G. Almutairi, B. AlOtaibi, S. Kumar, N. Arshi, S.G. Hussain, A. Umar, N. Ahmad, A. Aljaafari, Binder-free electrode based on ZnO nanorods directly grown on aluminum substrate for high performance supercapacitors. Nanomaterials 10(10), 1979 (2020)

    Article  CAS  Google Scholar 

  66. J. Jayachandiran, J. Yesuraj, M. Arivanandhan, A. Raja, S.A. Suthanthiraraj, R. Jayavel, D.J.J.O.I. Nedumaran, Synthesis and electrochemical studies of rGO/ZnO nanocomposite for supercapacitor application. J. Inorg. Organometallic Polym. Mater. 28, 2046–2055 (2018)

    Article  CAS  Google Scholar 

  67. G. Manibalan, M. Rajesh Kumar, G. Murugadoss, J. Yesuraj, R. Mohan Kumar, R. Jayavel, Novel chemical route for synthesis of CeO2–ZnO nanocomposite towards high electrochemical supercapacitor application. J. Mater. Sci. 32, 8746–8755 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

All authors kindly acknowledge the scheme MHRD-RUSA PHASE-2.0 (Grant sanctioned vide Letter No. F.24 51/2014-U, Policy (TN Multi-Gen), Dept.of Edn.Govt. of India, Dt.09.10.2018) New Delhi and the scheme DST-PURSE-II New Delhi for a Grant. Also, the authors express their sincere thanks to UGC-SAP, DST-FIST schemes aids and Alagappa University, India for providing the financial support and characterization facilities

Author information

Authors and Affiliations

Authors

Contributions

ZMR-writing original draft, MRP-project administration and chief, KS-review editing & software.

Corresponding author

Correspondence to M. Ramesh Prabhu.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed Riyas, Z., Ramesh Prabhu, M. & Sankaranarayanan, K. Hydrothermal synthesis of La2O3–ZnO nanocomposites as electrode material for asymmetric supercapacitor applications. J Mater Sci: Mater Electron 34, 1612 (2023). https://doi.org/10.1007/s10854-023-10988-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10988-5

Navigation