Skip to main content
Log in

Thermoluminescence response of a BeO ceramic dosimeter in therapeutic proton beam

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

BeO ceramics (Thermalox® 995, Materion Corp.) can function as thermoluminescent dosimeters (TLDs) with a tissue-equivalent effective atomic number and sufficient high solidity which can be used as postal dosimeters. To evaluate the feasibility of employing BeO ceramic in proton dosimetry, we investigated the dose–response and the linear energy transfer (LET) dependence of a BeO ceramic TLD. As the BeO ceramic TLDs exhibit two glow peaks, the dose–responses of the integral thermoluminescence (TL) signals for the low-temperature (GL) and high-temperature (GH) glow peaks, as well as those for entire TL signal (GT), were all investigated in this study. The irradiation doses were 0.5, 1.0, 2.0, and 5.0 Gy, and the LET dependence of the TL efficiency was investigated between 0.53 and 7.42 keVµm−1. All experiments were performed using a 160 MeV proton beam at NIRS-HIMAC in Japan. The TL intensities of GL, GH, and GT increased with increasing irradiation dose. The relation between the TL intensity and irradiation dose could be expressed as a function of a quadratic polynomial equation. The TL efficiencies of glow peaks (GH and GT) decreased with decreasing LET, while no significant correlation was observed between GL and LET. The shape of the glow curve of the BeO ceramic depends on the irradiation dose and LET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. J. Izewska, P. Bera, S. Vatnitsky, M. Radiation, P. Section, I. Atomic, E. Agency, Radiat. Prot. Dosim. 101, 387 (2002)

    Article  CAS  Google Scholar 

  2. J. Izewska, T. Bokulic, P. Kazantsev, P. Wesolowska, D. van der Merwe, Acta Oncol. 59, 495 (2020)

    Article  CAS  Google Scholar 

  3. W.G. Tochilin, E. Goldstein, N. Miller, Health Phys. 16, 1 (1969)

    Article  CAS  Google Scholar 

  4. P.J. Fox, R.A. Akber, J.R. Prescott, J. Phys. D Appl. Phys. 21, 189 (1988)

    Article  CAS  Google Scholar 

  5. A.M. Noh, Y.M. Amin, R.H. Mahat, D.A. Bradley, Radiat. Phys. Chem. 61, 497 (2001)

    Article  CAS  Google Scholar 

  6. J.F. Agirre, R. Tailor, G. IBBOTT, M. STOVALL, and W. HANSON, IAEA-CN-96-82 191 (2002)

  7. M. Jermann, Int. J. Part. 2(1), 50–54 (2015)

    Google Scholar 

  8. W. Hoffmann, J. Bienen, D. Filges, T. Schmitz, Radiat. Prot. Dosim. 85, 341 (1999)

    Article  CAS  Google Scholar 

  9. H. Yasuda, Publ. Nucl. Technol. 87, 115 (2000)

    CAS  Google Scholar 

  10. H. Yasuda, K. Fujitaka, Radiat. Prot. Dosim. 87, 203 (2000)

    Article  Google Scholar 

  11. H. Yasuda, K. Fujitaka, Radiat. Meas. 32, 355 (2000)

    Article  CAS  Google Scholar 

  12. M. Sadel, P. Bilski, J. Swakoń, A. Weber, Radiat. Prot. Dosim. 168, 27 (2014)

    Article  Google Scholar 

  13. K. Shinsho, Y. Koba, G. Wakabayashi, S. Tamatsu, S. Fukuda, R. Morimoto, D. Maruyama, H. Saitoh, N. Sakurai, Radiat. Meas. 62, 15 (2014)

    Article  CAS  Google Scholar 

  14. Y. Koba, K. Shinsho, S. Tamatsu, S. Fukuda, G. Wakabayashi, Radiat. Prot. Dosim. 1(1–4), 437–440 (2014)

    Article  Google Scholar 

  15. W. Chang, Y. Koba, S. Fukuda, G. Wakabayashi, H. Saitoh, K. Shinsho, J. Nucl. Sci. Technol. 53(12), 2028–2033 (2016)

    Article  CAS  Google Scholar 

  16. D. Maruyama, S. Yanagisawa, Y. Koba, T. Andou, K. Shinsho, Sens. Mater. 32, 1461 (2020)

    Google Scholar 

  17. S. Yanagisawa, D. Maruyama, R. Oh, Y. Koba, T. Andoh, K. Shinsho, Sens. Mater. 32, 1479 (2020)

    CAS  Google Scholar 

  18. Y. Koba, W. Chang, K. Shinsho, S. Yanagisawa, G. Wakabayashi, K. Matsumoto, H. Ushiba, T. Ando, Sens. Mater. 28, 881 (2016)

    CAS  Google Scholar 

  19. M. Sommer, R. Freudenberg, J. Henniger, Radiat. Meas. 42, 617 (2007)

    Article  CAS  Google Scholar 

  20. M. Tanaka, R. Oh, N. Sugioka, H. Tanaka, T. Takata, G. Wakabayashi, S. Sugawara, K. Watanabe, A. Uritani, S. Yoshihashi, K. Nagasaka, G. Okada, T. Negishi, K. Shinsho, J. Mater. Sci. Mater. Electron. 33, 20271 (2022)

    Article  CAS  Google Scholar 

  21. N. Matsubayashi, N. Hu, T. Takata, A. Sasaki, T. Mukawa, K. Suga, Y. Sakurai, H. Tanaka, SSRN Electron. J. 161, 106900 (2022)

    Google Scholar 

  22. K. Shinsho, in Phosphors Radiat. Detect, ed by T. Yanagida, M. Koshimizu (Wiley, New Jersey, 2022), p. 416

  23. N. Koshio, H. Takagi, D. Maruyama, S. Yanagisawa, G. Okada, K. Shinsho, in 80th JSAP Autumn Meeding (2019)

  24. ICRU, ICRU Report 16Linear Energy Transfer, (1970)

  25. T. Berger, M. Hajek, M. Fugger, N. Vana, Radiat. Prot. Dosim. 120, 361 (2006)

    Article  CAS  Google Scholar 

  26. P. Bilski, Radiat. Meas. 45, 42 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to the staff at Accelerator Engineering Corporation. This work was conducted as a part of the Research Project with Heavy Ions at QST-HIMAC.

Funding

We did not accept any funding for this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by WC, SS, YK, KO, GO, and KS. The first draft of the manuscript was written by WC and all authors commented on previous versions of the manuscript.

Corresponding author

Correspondence to Weishan Chang.

Ethics declarations

Conflicts of interest.

All the authors have no conflicts of interest to declare.

Informed consent

Since the authors have nothing to declare and no human participants/animals are involved in this study, no informed consent is needed.

Research involving Human/or Animals and Participants

No human participants/animals are involved in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, W., Sugawara, S., Koba, Y. et al. Thermoluminescence response of a BeO ceramic dosimeter in therapeutic proton beam. J Mater Sci: Mater Electron 34, 1606 (2023). https://doi.org/10.1007/s10854-023-10984-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10984-9

Navigation