Skip to main content
Log in

The frequency dependent complex dielectric and electric modulus properties of Au/P3HT/n-Si (MPS) Schottky barrier diode (SBD)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The frequency dependent electrical and dielectric properties of the Au/P3HT/n-Si metal-polymer-semiconductor (MPS) type Schottky barrier diode (SBD) has been investigated using admittance-voltage (C/G-V) measurements over the range of 10 kHz–1 MHz at room temperature. Experimental results show that the values of both C and G/w decrease with increasing frequency confirming that the charges at interface can easily follow an ac signal and yield excess capacitance, especially, at low frequency. The frequency dependent dielectric constant (ε′), dielectric loss (ε″), and loss tangent (tan δ) are obtained using C and G/w data at various voltages. The ε′ and ε″ values are found to be strongly dependent on both frequency and voltage, and their large values at low frequencies can be attributed to the excess polarization coming from charges at traps. The ac electrical conductivity (σac) tends to increase with both increasing frequency and voltage, as in the C-V and G-V values, indicating that both the interfacial polarization and surface states (Nss) are more effective at low frequencies and so yield an excess capacitance and conductance to the real value of them. Also, the electric modulus formalism of dielectric relaxation was studied to understand the nature of conductivity relaxation in P3HT. It was found that the frequency dependent real parts, M' and imaginary parts, M", of the electric modulus strongly change with both frequency and voltages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ö.F. Bakkaloğlu, K. Ejderha, H. Efeoğlu, Ş Karataş, A. Türüt, Temperature dependence of electrical parameters of the Cu/n-Si metal semiconductor Schottky structures. J. Mol. Struct. 1224, 129057 (2021)

    Article  Google Scholar 

  2. Y. Şafak Asar, A. Feizollahi Vahid, N. Basman, H.G. Çetinkaya, Ş Altındal, Frequency-dependent electrical parameters and extracted voltage-dependent surface states in Al/DLC/p-Si structure using the conductance method. Appl. Phys. A. 129, 358 (2023)

    Article  Google Scholar 

  3. Ö. Sevgili, Y. Azizian-Kalandaragh, Ş Altındal, Frequency and voltage dependence of electrical and dielectric properties in metal-interfacial layer-semiconductor (MIS) type structures. Physica B 587, 412122 (2020)

    Article  CAS  Google Scholar 

  4. S. Bengi, M.M. Bülbül, Annealing effect on the electrical properties of HfO2 based Schottky barrier diodes. J. Optoelectron. Adv. Mater. 16, 451–456 (2014)

    Google Scholar 

  5. D. Ata, S. Altındal Yeriskin, A. Tataroğlu, M. Balbasi, Analysis of admittance measurements of Al/Gr-PVA/p-Si (MPS) structure. J. Phys. Chem. Solids 169, 110861 (2022)

    Article  CAS  Google Scholar 

  6. J. Kuwabara, T. Kanbara, Green synthetic approaches to π-conjugated polymers for thin-film transistors and photovoltaic application, Woodhead Publishing Series in electronic and optical materials (Elsevier, Amsterdam, 2022), pp.75–94

    Google Scholar 

  7. S. Lee, H. Kim, Y. Kim, Hole injection role of p-type conjugated polymer nanolayers in phosphorescent organic light-emitting devices. Electronics 10, 2283 (2021)

    Article  CAS  Google Scholar 

  8. S. Raj, A.D.D. Dwivedi, Numerical simulation of P3HT based organic light emitting diode, international journal of advanced. Appl. Phys. Res. 5, 7–13 (2018)

    Google Scholar 

  9. T. Han, L. Sun, Y. Guo, S. Ding, G. Jin, C. Jiang, X. Huang, X. Zhang, F. Chang, New strategy for enhancing performance of P3HT-based organic field-effect transistor via regulating the precipitated speed of solute in volatile solvents. Polym. Test. 90, 106788 (2020)

    Article  CAS  Google Scholar 

  10. H. Runfang, Y. Yangfan, L. Leilei, J. Jianlong, Z. Qiang, D. Lifeng, S. Shengbo, L. Qiang, P3HT-based organic field effect transistor for low-cost, label-free detection of immunoglobulin G. J. Biotechnol. 359, 75–81 (2022)

    Article  Google Scholar 

  11. F. Landgrave-Barbosa, A.F. Marmolejo-Valencia, A. Baray-Calderón et al., Impact of thickness of spin-coated P3HT thin films, over their optical and electronic properties. J. Solid State Electrochem. 26, 649–661 (2022)

    Article  CAS  Google Scholar 

  12. S. Khan, L. Lorenzelli, R.S. Dahiya, Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015)

    Article  Google Scholar 

  13. L. Sowjanya Pali, R. Jindal, A. Garg, Screen printed PEDOT: PSS films as transparent electrode and its application in organic solar cells on opaque substrates. J. Mater. Sci.: Mater. Electron. 29, 11030–11038 (2018)

    Google Scholar 

  14. H.G. Çetinkaya, O. Çiçek, Ş Altιndal, Y. Badali, S. Demirezen, Vertical CdTe:PVP/p-Si based temperature sensor by using aluminum anode schottky contact. IEEE Sens. J. 22, 22391 (2022)

    Article  Google Scholar 

  15. S. Bengi, Electrical properties and conduction mechanism of Au/C20H12/n-Si structure at high temperatures utilizing impedance measurements. J. Electron. Mater. 52, 3083–3091 (2023)

    Article  CAS  Google Scholar 

  16. T.A. Abdalla, W. Mammo, B. Workalemahu, Electronic and photovoltaic properties of a single layer poly[3-(2″,5″-diheptyloxyphenyl)-2,2′-bithiophene] devices. Synth. Met. 144, 213–219 (2004)

    Article  CAS  Google Scholar 

  17. F.E. Ahmed, O.A. Yassin, Fabrication and effect of the dielectric permittivity on the ideality factor of MEH-PPV Schottky diodes doped with electron acceptor fluorescent dyes. Microelectron. J. 38, 834–837 (2007)

    Article  CAS  Google Scholar 

  18. Ş Aydoğan, M. Sağlam, A. Türüt, The effects of the temperature on the some parameters obtained from current–voltage and capacitance–voltage characteristics of polypyrrole/n-Si structure. Polymer 46, 563–568 (2005)

    Article  Google Scholar 

  19. R. Gupta, R. Singh, Electrical properties of junction between aluminium and poly(aniline)–poly(vinyl chloride) composite. Mater. Chem. Phys. 86, 279–283 (2004)

    Article  CAS  Google Scholar 

  20. C. Girotto, D. Cheyns, T. Aernouts, F. Banishoeib, L. Lutsen, T.J. Cleij et al., Bulk heterojunction organic solar cells based on soluble poly(thienylene vinylene) derivatives. Org. Electron. 9, 740–746 (2008)

    Article  CAS  Google Scholar 

  21. R.A. Street, Thin-film transistors. Adv. Mater. 21, 2007–2022 (2009)

    Article  CAS  Google Scholar 

  22. H. Sirringhaus, P.J. Brown, R.H. Friend, M.M. Nielsen, K. Bechgaard, B.M.W. Langeveld-Voss et al., Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999)

    Article  CAS  Google Scholar 

  23. E. Yükseltürk, M.M. Bülbül, S. Zeyrek, The effects of illumination on electrical parameters of Au/P3HT/n-Si Schottky barrier diode. AIP Conf. Proc. 1722, 220027 (2016)

    Article  Google Scholar 

  24. M.R. Antognazza, D. Musitelli, S. Perissinotto, G. Lanzani, Spectrally selected photodiodes for colorimetric application. Org. Electron. 11, 357–362 (2010)

    Article  CAS  Google Scholar 

  25. P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns et al., P3HT/PCBM bulk heterojunction solar cells: relation between morphology and electro-optical characteristics. Sol. Energy Mater. Sol. Cells 90, 2150–2158 (2006)

    Article  CAS  Google Scholar 

  26. H. Lu, X. Li, Q. Lei, Conjugated conductive polymer materials and its applications: a mini-review. Front. Chem. 9, 732132 (2021)

    Article  CAS  Google Scholar 

  27. A. Zen, J. Pflaum, S. Hirschmann, W. Zhuang, F. Jaiser, U. Asawapirom et al., Effect of molecular weight and annealing of poly(3-hexylthiophene)s on the performance of organic field-effect transistors. Adv. Funct. Mater. 14, 757–764 (2004)

    Article  CAS  Google Scholar 

  28. P. Schilinsky, U. Asawapirom, U. Scherf, M. Biele, C.J. Brabec, Influence of the molecular weight of poly(3-hexylthiophene) on the performance of bulk heterojunction solar cells. Chem. Mater. 17, 2175–2180 (2005)

    Article  CAS  Google Scholar 

  29. Q. Ye, C. Chi, Conjugated polymers for organic solar cells, solar cells-new aspects and solutions (InTech, London, 2011)

    Google Scholar 

  30. H. Borchert, Elementary processes and limiting factors in hybrid polymer/nanoparticle solar cells. Energy Environ. Sci. 3, 1682 (2010)

    Article  CAS  Google Scholar 

  31. C.H. Kim, K. Kisiel, J. Jung, J. Ulanski, D. Tondelier, B. Geffroy et al., Persistent photoexcitation effect on the poly(3-hexylthiophene) film: impedance measurement and modeling. Synth. Met. 162, 460–465 (2012)

    Article  CAS  Google Scholar 

  32. Ö. Sevgili, İ Taşçıoğlu, S. Boughdachid, Y. Azizian-Kalandaraghd, Ş Altındal, Examination of dielectric response of Au/HgS-PVA/n-Si (MPS) structure by impedance spectroscopy method. Physica B 566, 125 (2019)

    Article  CAS  Google Scholar 

  33. H.G. Çetinkaya, S. Demirezen, S. Altındal, Doping rate, interface states and polarization effects on dielectric properties, electric modulus, and AC conductivity in PCBM/NiO:ZnO/p-Si structures in wide. SILICON 14, 8517–8527 (2022)

    Article  Google Scholar 

  34. E. Yükseltürk, M. Çotuk, M.M. Bülbül, Ş Altındal, S. Zeyrek, On the profile of temperature dependent main electrical parameters in Al/P3HT/p-Si (MPS) structures at low temperatures. Mater. Today: Proc. 18, 1852–1860 (2019)

    Article  Google Scholar 

  35. S. Bengi, E. Yükseltürk, M.M. Bülbül, Investigation of electrical characterization of Al/HfO2/p-Si structures in wide temperature range. J. Mater. Sci.: Mater. Electron. 34, 189 (2023)

    CAS  Google Scholar 

  36. S.M. Sze, Physics of semiconductor devices, 3rd edn. (Wiley, New Jersey, 2007)

    Google Scholar 

  37. S. Bengi, M.M. Bülbül, Electrical and dielectric properties of Al/HfO2/p-Si MOS device at high temperatures. Curr. Appl. Phys. 13, 1819–1825 (2013)

    Article  Google Scholar 

  38. R.R. Razouk, Dependence of interface state density on silicon thermal oxidation process variables. J. Electrochem. Soc. 126, 1573 (1979)

    Article  CAS  Google Scholar 

  39. E.H. Rhoderick, R.H. Williams, Metal semiconductor contacts (Clarendon Press, Oxford, 1988)

    Google Scholar 

  40. S.K. Cheung, N.W. Cheung, Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  41. H. Norde, A modified forward I-V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052 (1979)

    Article  CAS  Google Scholar 

  42. E.H. Nicollian, J.R. Brews, Metal oxide semiconductor (MOS) physics and technology (Wiley, New York, 1982)

    Google Scholar 

  43. W.A. Hill, C.C. Coleman, A single-frequency approximation for interface-state density determination. Solid State Electron. 23, 987 (1980)

    Article  CAS  Google Scholar 

  44. A. Chelkowski, Dielectric physics (Elsevier, Amsterdam, 1980)

    Google Scholar 

  45. C.P. Symth, Dielectric behaviour and device (McGraw-Hill, New York, 1955)

    Google Scholar 

  46. A.R. von Hippel, Dielectric materials and applications (Willey, New York, 1954)

    Google Scholar 

  47. V. Vera Daniel, Dielectric relaxation (Academic Press, London, 1967)

    Google Scholar 

  48. M. Popescu, I. Bunget, Physics of solid dielectrics (Elsevier, Amsterdam, 1984)

    Google Scholar 

  49. K.S. Karimov, M.M. Ahmed, S.A. Moiz, M.I. Fedorov, Temperature-dependent properties of organic-on-inorganic Ag/p-CuPc/n-GaAs/Ag photoelectric cell. Sol. Energy Mater. Sol. Cells 87, 61–75 (2005)

    Article  CAS  Google Scholar 

  50. B. Şahin, H. Çetin, E. Ayyildiz, The effect of series resistance on capacitance–voltage characteristics of Schottky barrier diodes. Solid State Commun. 135, 490–495 (2005)

    Article  Google Scholar 

  51. D.K. Cheng, Field and wave electromagnetics, 2nd edn. (Addison Wesley, New York, 1989)

    Google Scholar 

  52. A.A. Sattar, S.A. Rahman, Dielectric properties of rare earth substituted Cu–Zn ferrites. Phys. Status Sol. 200, 415–422 (2003)

    Article  CAS  Google Scholar 

  53. K. Prabakar, S.K. Narayandass, D. Mangalaraj, Dielectric properties of Cd0.6Zn0.4Te thin films. Phys. Status Sol. 199, 507–514 (2003)

    Article  CAS  Google Scholar 

  54. S. Awan, R. Gould, Conductivity and dielectric properties of silicon nitride thin films prepared by RF magnetron sputtering using nitrogen gas. Thin Solid Films 423, 267–272 (2003)

    Article  CAS  Google Scholar 

  55. T. Ozaki, T. Ogasawara, T. Kosugi, T. Kamada, Dielectric dispersion of SiO2 glass at low temperatures. Phys. B Condens. Matter. 263–264, 333–335 (1999)

    Article  Google Scholar 

  56. H. Dong, X. Fu, J. Liu, Z. Wang, W. Hu, 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 6158–6183 (2013)

    Article  CAS  Google Scholar 

  57. H.G. Çetinkaya, A. Feizollahi Vahid, N. Basman, S. Demirezen, Y. Şafak Asar, Ş Altındal, On the wide range frequency and voltage dependence of electrical features and density of surface states of the Al/(Cu:DLC)/p-Si/Au Schottky diodes (SDs). J. Mater. Sci.: Mater. Electron. 34, 822 (2023)

    Google Scholar 

  58. Ş Altındal, A. Barkhordari, Y. Azizian-Kalandaragh, B.S. Çevrimli, H.R. Mashayekhi, Dielectric properties and negative-capacitance/dielectric in Au/n-Si structures with PVC and (PVC:Sm2O3) interlayer. Mater. Sci. Semicond. Process. 147, 106754 (2022)

    Article  Google Scholar 

  59. Ö. Sevgili, The investigation of the complex dielectric and electric modulus of Al/Mg2Si/p-Si Schottky diode and its AC electrical conductivity in a wide frequency range. Turkish J. Phys. 45, 159–168 (2021)

    Article  CAS  Google Scholar 

  60. O. Bidault, P. Goux, M. Kchikech, M. Belkaoumi, M. Maglione, Space-charge relaxation in perovskites. Phys. Rev. B. 49, 7868–7873 (1994)

    Article  CAS  Google Scholar 

  61. S. Demirezen, S.A. Yerişkin, Frequency and voltage-dependent dielectric spectroscopy characterization of Al/(Coumarin-PVA)/p-Si structures. J. Mater. Sci.: Mater. Electron. 32, 25339–25349 (2021)

    CAS  Google Scholar 

  62. M.D. Migahed, M. Ishra, T. Fahmy, A. Barakat, Electric modulus and AC conductivity studies in conducting PPy composite films at low temperature. J. Phys. Chem. Solids 65, 1121–1125 (2004)

    Article  CAS  Google Scholar 

Download references

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Esra Yükseltürk and Seda Bengi. The first draft of the manuscript was written by Esra Yükseltürk and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Seda Bengi.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Ethical approval

This study does not contain any human-related information and no animals were used.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yükseltürk, E., Bengi, S. The frequency dependent complex dielectric and electric modulus properties of Au/P3HT/n-Si (MPS) Schottky barrier diode (SBD). J Mater Sci: Mater Electron 34, 1580 (2023). https://doi.org/10.1007/s10854-023-10983-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10983-w

Navigation