Skip to main content
Log in

Impact of thickness of spin-coated P3HT thin films, over their optical and electronic properties

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A study of poly(3-hexylthiophene) (P3HT) thin films by spin-coating process, deposited on conducting glass substrates of fluorine-doped tin oxide (FTO), is performed varying thicknesses from 32 to 80 nm. We observe an increase in absorbance at 510, 550, and 610 nm; however, for film thicknesses between 40 and 50 nm, the spectra show abnormalities below 500 nm, resulting from the creation of defects that modify the bandgap value. To prove this hypothesis, we determine the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy level positions of different thickness P3HT films by energy-resolved electrochemical impedance spectroscopy (ER-EIS). This experiment revealed that the HOMO level remains constant regardless of the film thickness, whereas the LUMO exhibits a thickness dependence, where the 46 nm film produces a maximum. To analyze the potentiostatic EIS response, we propose an equivalent electric circuit (EEC) to build relative influence diagrams. The corresponding numerical analysis provides, first, a technique to select ER-EIS appropriate frequencies for studying the electronic response of P3HT films, and second, it allows identifying film defect states in the gap region: density of states (DOS) near the HOMO and LUMO levels, and defect states inside the gap. A molecular dynamics force field (FF) simulation provides a distribution of geometrical arrangements of P3HT oligomers, which are studied subsequently by density functional theory (DFT) calculations to estimate their HOMO-LUMO energies variations. These calculations allow us to explain DOS features detected experimentally near the gap borders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Chopra KL, Paulson PD, Dutta V (2004) Thin-film solar cells: an overview. Prog Photovolt Res Appl 12(2–3):69–92

    Article  CAS  Google Scholar 

  2. Green M (2007) Thin-film solar cells: review of materials, technologies and commercial status. J Mater Sci Mater Electron 18:15–19

    Article  Google Scholar 

  3. Cao H, He W, Mao Y, Lin X, Ishikawa K, Dickerson JH, Hess WP (2014) Recent progress in degradation and stabilization of organic solar cells. J Power Sources 264:168–183

    Article  CAS  Google Scholar 

  4. Böckmann M, Schemme T, de Jong DH, Denz C, Heuer A, Doltsinis NL (2015) Structure of P3HT crystals, thin films, and solutions by UV/Vis spectral analysis. Phys Chem Chem Phys 17:28616–28625

    Article  PubMed  Google Scholar 

  5. Ostroverkhova O (2016) Organic optoelectronic materials: Mechanisms and applications. Chem Rev 116(22):13279–13412

    Article  CAS  PubMed  Google Scholar 

  6. Tremel K, Ludwigs S (2014) Morphology of P3HT in thin films in relation to optical and electrical properties. Adv Polym Sci 265:39–82

    Article  CAS  Google Scholar 

  7. Salleo A (2007) Charge transport in polymeric transistors. Mater Today 10(3):38–45

    Article  CAS  Google Scholar 

  8. Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17(20):2411–2425

    Article  CAS  Google Scholar 

  9. DeLongchamp DM, Ling MM, Jung Y, Fischer DA, Roberts ME, Lin EK, Bao Z (2006) Thickness dependence of microstructure in semiconducting films of an oligofluorene derivative. J Am Chem Soc 128(51):16579–16586

    Article  CAS  PubMed  Google Scholar 

  10. Yeong Na J, Kang B, Sin DH, Cho K, Don Park Y (2015) Understanding solidification of polythiophene thin films during spin-coating: Effects of spin-coating time and processing additives. Sci Rep 5:13288

    Article  Google Scholar 

  11. Deibel C, Strobel T, Dyakonov V (2010) Role of the charge transfer state in organic donor-acceptor solar cells. Adv Mater 22(37):4097–4111

    Article  CAS  PubMed  Google Scholar 

  12. Facchetti A (2013) Polymer donor-polymer acceptor (all-polymer) solar cells. Mater Today 16(4):123–132

    Article  CAS  Google Scholar 

  13. Yan J, Saunders BR (2014) Third-generation solar cells: a review and comparison of polymer:fullerene, hybrid polymer and perovskite solar cells. RSC Adv 4:43286–43314

    Article  CAS  Google Scholar 

  14. Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent advances in bulk heterojunction polymer solar cells. Chem Rev 115(23):12666–12731

    Article  CAS  PubMed  Google Scholar 

  15. Elumalai NK, Uddin A (2016) Open circuit voltage of organic solar cells: an in-depth review. Energy Environ Sci 9:391–410

    Article  CAS  Google Scholar 

  16. An Q, Zhang F, Zhang J, Tang W, Deng Z, Hu B (2016) Versatile ternary organic solar cells: a critical review. Energy Environ Sci 9:281–322

    Article  Google Scholar 

  17. Lücke A, Schmidt W, Rauls E, Ortmann F, Gerstmann U (2015) Influence of structural defects and oxidation onto hole conductivity in P3HT. J Phys Chem B 119(21):6481–6491

    Article  PubMed  Google Scholar 

  18. Boix PP, Ajuria J, Etxebarria I, Pacios R, Garcia-Belmonte G (2012) Kinetics of occupancy of defect states in poly(3-hexylthiophene):fullerene solar cells. Thin Solid Films 520(6):2265–2268

    Article  CAS  Google Scholar 

  19. Fengjuan S, Fuling T, Hongtao X, Rongfei Q (2016) Effects of defect states on the performance of perovskite solar cells. J Semicond 37(7):072003

  20. Elumalai NK, Saha A, Vijila C, Jose R, Jie Z, Ramakrishna S (2013) Enhancing the stability of polymer solar cells by improving the conductivity of the nanostructured MoO\(_3\) hole-transport layer. Phys Chem Chem Phys 15:6831–6841

    Article  CAS  PubMed  Google Scholar 

  21. Acevedo-Peña P, Baray-Calderón A, Hu H, González I, Ugalde-Saldivar VM (2017) Measurements of homo-lumo levels of poly(3-hexylthiophene) thin films by a simple electrochemical method. J Solid State Electrochem 21(8):2407–2414

    Article  Google Scholar 

  22. Arenas M, Mendoza N, Cortina H, Nicho M, Hu H (2010) Influence of poly3-octylthiophene (P3OT) film thickness and preparation method on photovoltaic performance of hybrid ITO/CdS/P3OT/Au solar cells. Solar Energy Materials and Solar Cells 94(1):29–33. 17th International Materials Research Congress 2008

  23. DeLongchamp DM, Vogel BM, Jung Y, Gurau MC, Richter CA, Kirillov OA, Obrzut J, Fischer DA, Sambasivan S, Richter LJ, Lin EK (2005) Variations in semiconducting polymer microstructure and hole mobility with spin-coating speed. Chem Mater 17(23):5610–5612

    Article  CAS  Google Scholar 

  24. Kim S, Kang B, Lee M, Lee SG, Cho K, Yang H, Park YD (2014) Sequential solvent casting for improving the structural ordering and electrical characteristics of polythiophene thin films. RSC Adv 4:41159–41163

    Article  CAS  Google Scholar 

  25. Cortina-Marrero HJ, Martínez-Alonso C, Hechavarría-Difur L, Hu H (2013) Photovoltaic performance improvement in planar P3HT/CdS solar cells induced by structural, optical and electrical property modification in thermal annealed P3HT thin films. Eur Phys J Appl Phys 63(1):10201

    Article  Google Scholar 

  26. Cerrillo JG, Mendoza ANC, Romero PMM, Granados AH, Hu H (2017) Improvement of the morphological and electrical characteristics of Al\(^{3+}\), Fe\(^{3+}\) and Bi\(^{3+}\)-doped TiO\(_2\) compact thin films and their incorporation into hybrid solar cells. Mater Sci Semicond Process 72:106–114

    Google Scholar 

  27. Cardona CM, Li W, Kaifer AE, Stockdale D, Bazan GC (2011) Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv Mater 23(20):2367–2371

    Article  CAS  PubMed  Google Scholar 

  28. Nádazdy V, Schauer F, Gmucová K (2014) Energy resolved electrochemical impedance spectroscopy for electronic structure mapping in organic semiconductors. Appl Phys Lett 105(14):142109

  29. Gmucová K, Nádazdy V, Schauer F, Kaiser M, Majková E (2015) Electrochemical spectroscopic methods for the fine band gap electronic structure mapping in organic semiconductors. J Phys Chem C 119(28):15926–15934

    Article  Google Scholar 

  30. Schauer F, Tkácová M, Nadázdy V, Gmucová K, Ozvoldová M, Tkác L, Chlpík J (2016) Electronic structure of UV degradation defects in polysilanes studied by Energy Resolved-Electrochemical Impedance Spectroscopy. Polym Degrad Stab 126(C):204–208

  31. Wang J, Wang W, Kollman PA, Case DA (2006) Automatic atom type and bond type perception in molecular mechanical calculations. J Mol Graph Model 25(2):247–260

    Article  PubMed  Google Scholar 

  32. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general Amber force field. J Comb Chem 25(9):1157–1174

    Article  CAS  Google Scholar 

  33. Shao Y et al (2015) Advances in molecular quantum chemistry contained in the Q-Chem 4 program package. Mol Phys 113(2):184–215

    Article  CAS  Google Scholar 

  34. Saez DA, Vöhringer-Martinez E (2015) A consistent S-Adenosylmethionine force field improved by dynamic Hirshfeld-I atomic charges for biomolecular simulation. J Comput Aided Mol Des 29(10):951–961

    Article  CAS  PubMed  Google Scholar 

  35. Chen TA, Wu X, Rieke RD (1995) Regiocontrolled synthesis of poly(3-alkylthiophenes) mediated by Rieke zinc: Their characterization and solid-state properties. J Am Chem Soc 117(1):233–244

    Article  CAS  Google Scholar 

  36. Shrotriya V, Ouyang J, Tseng RJ, Li G, Yang Y (2005) Absorption spectra modification in poly(3-hexylthiophene): methanofullerene blend thin films. Chem Phys Lett 411(1):138–143

    Article  CAS  Google Scholar 

  37. Jin Z, Wang J (2014) PIN architecture for ultrasensitive organic thin film photoconductors. Sci Rep 4:5331–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rahimi K, Botiz I, Agumba JO, Motamen S, Stingelin N, Reiter G (2014) Light absorption of poly(3-hexylthiophene) single crystals. RSC Adv 4:11121–11123

    Article  CAS  Google Scholar 

  39. Hussein AA, Sultan AA, Obeid MT, Abdulnabi AT, Ali MT (2015) Synthesis and characterization of poly(3-hexylthiophene). International Journal of Scientific Engineering and Applied Science (IJSEAS) 1(7):33–38

    Google Scholar 

  40. Al-Ibrahim M, Roth HK, Schroedner M, Konkin A, Zhokhavets U, Gobsch G, Scharff P, Sensfuss S (2005) The influence of the optoelectronic properties of poly(3-alkylthiophenes) on the device parameters in flexible polymer solar cells. Org Electron 6:65–77

    Article  CAS  Google Scholar 

  41. Zhou H, Yang L, You W (2012) Rational design of high performance conjugated polymers for organic solar cells. Macromolecules 45(2), 607–632

    Article  CAS  Google Scholar 

  42. Cid CP, Spada E, Sartorelli M (2013) Effect of the cathodic polarization on structural and morphological proprieties of fto and ito thin films. Appl Surf Sci 273:603–606

    Article  CAS  Google Scholar 

  43. Korjenic A, Raja KS (2019) Electrochemical stability of fluorine doped tin oxide (FTO) coating at different pH conditions. J Electrochem Soc 166(6):C169–C184

    Article  CAS  Google Scholar 

  44. Estrada-Vargas A, Bandarenka A, Kuznetsov V, Schuhmann W (2016) In situ characterization of ultrathin films by scanning electrochemical impedance microscopy. Anal Chem 88(6):3354–3362

    Article  CAS  PubMed  Google Scholar 

  45. Tsoi WC, Spencer SJ, Yang L, Ballantyne AM, Nicholson PG, Turnbull A, Shard AG, Murphy CE, Bradley DDC, Nelson J, Kim JS (2011) Effect of crystallization on the electronic energy levels and thin film morphology of P3HT:PCBM blends. Macromolecules 44(8):2944–2952

    Article  CAS  Google Scholar 

  46. McLeod JA, Pitman AL, Kurmaev EZ, Finkelstein LD, Zhidkov IS, Savva A, Moewes A (2015) Linking the HOMO-LUMO gap to torsional disorder in P3HT/PCBM blends. J Chem Phys 143(22):224704

  47. Chen C, Li F (2013) Improving the efficiency of ITO/nc-TiO\(_2\)/CdS/P3HT:PCBM/PEDOT:PSS/Ag inverted solar cells by sensitizing TiO\(_2\) nanocrystalline film with chemical bath-deposited CdS quantum dots. Nanoscale Res Lett 8(1):453

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen Z, Li Q, Chen C, Du J, Tong J, Jin X, Li Y, Yuan Y, Qin Y, Wei T, Sun W (2014) Enhanced charge transport and photovoltaic performance induced by incorporating rare-earth phosphor into organic-inorganic hybrid solar cells. Phys Chem Chem Phys 16:24499–24508

    Article  CAS  PubMed  Google Scholar 

  49. Fabregat-Santiago F, Garcia-Belmonte G, Bisquert J, Bogdanoff P, Zaban A (2003) Mott-Schottky analysis of nanoporous semiconductor electrodes in dielectric state deposited on SnO\(_2\)(F) conducting substrates. J Electrochem Soc 150(6):E293–E298

    Article  CAS  Google Scholar 

  50. Cameron PJ, Peter LM (2003) Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells. J Phys Chem B 107(51):14394–14400

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CONACyT-SENER Sustentabilidad No. 245754, PAPIIT-UNAM No. IN102619 and CONACyT-Laboratorio Nacional 2021 LIFYCS 315801 for financial support, and DGTIC-UNAM for computational resources provided under project LANCAD-UNAM-DGTIC-022. A. F. M.-V. thanks CONACyT for graduate student scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Amador-Bedolla or Víctor M. Ugalde-Saldivar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 485 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landgrave-Barbosa, F., Marmolejo-Valencia, A.F., Baray-Calderón, A. et al. Impact of thickness of spin-coated P3HT thin films, over their optical and electronic properties. J Solid State Electrochem 26, 649–661 (2022). https://doi.org/10.1007/s10008-021-05078-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-021-05078-7

Keywords

Navigation