Skip to main content
Log in

Improvement of sodium storage performance of N-doped carbon coated NaTi2(PO4)3 derived from polyvinyl pyrrolidone

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nitrogen incorporated carbon composite of Sodium titanium phosphate (NaTi2(PO4)3/NTP) can be deliberated as a proficient anode for sodium-ion battery application for its structural stability and good ionic mobility. Presence of nitrogen into the carbon moiety delaminate the problem of poor electronic conductivity and make it practically usable. The carbon composite properties play a crucial role on surface engineered active material, which control the electrochemical performance of an electrode. Here we have synthesized a N-doped carbon coated NTP composite using only ploy vinyl pyrrolidone as both nitrogen and carbon source by a simple sol-gel method. The as prepared NTP-N@C composite reveals excellent electrochemical properties including cycleability, rate performance and specific capacity. The hetero atom doping into carbon matrix enhances both the ionic and electronic conductivity. The structural and morphological study also shows that source of carbon and carbon matrix properties has significant effect on the electrochemical performance. Compare to citric acid derived NTP-C, NTP-N@C shows better performance by delivering a discharge capacity of 106.5 mAhg−1 and 67 mAhg−1 at a current density of 0.1 Ag−1 and 3 Ag−1. Again when the electrode is cycled at 1 Ag−1 for 500 cycle its capacity retention is 86.8% whereas for NTP-C it is only 58.2%. Results exposes the combination of carbon coating and nitrogen doping makes sodium titanium phosphate a promising anode for practical application in sodium-ion battery research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

The data needed to support the findings are available within the article and raw data could be reproduced upon reasonable request.

References

  1. J.M. Lee, G. Singh, W. Cha, S. Kim, J. Yi, S.J. Hwang, A. Vinu, Recent advances in developing hybrid materials for Sodium-Ion Battery Anodes. ACS Energy Lett. 5, 1939–1966 (2020). https://doi.org/10.1021/acsenergylett.0c00973

    Article  CAS  Google Scholar 

  2. N. Nitta, F. Wu, J.T. Lee, G. Yushin, Li-ion battery materials: Present and future. Mater. Today. 18, 252–264 (2015). https://doi.org/10.1016/j.mattod.2014.10.040

    Article  CAS  Google Scholar 

  3. H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, H. Yuan, Update on anode materials for Na-ion batteries. J. Mater. Chem. A 3, 17899–17913 (2015). https://doi.org/10.1039/c5ta03181h

    Article  CAS  Google Scholar 

  4. A. El Kharbachi, O. Zavorotynska, M. Latroche, F. Cuevas, V. Yartys, M. Fichtner, Exploits, advances and challenges benefiting beyond Li-ion battery technologies. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2019.153261

    Article  Google Scholar 

  5. J. Peng, W. Zhang, Q. Liu, J. Wang, S. Chou, H. Liu, S. Dou, Prussian blue analogues for sodium-ion batteries: past, present, and future. Adv. Mater. 15, 2108384 (2022). https://doi.org/10.1002/adma.202108384

    Article  CAS  Google Scholar 

  6. H. Zhang, Y. Gao, X.-H. Liu, Z. Yang, X.X. He, L. Li, Y. Qiao, Organic cathode materials for sodium‐ion batteries: from fundamental research to potential commercial application. Adv. Funct. Mater. 32, 2107718 (2022). https://doi.org/10.1002/adfm.202107718

    Article  CAS  Google Scholar 

  7. W. Zuo, A. Innocenti, M. Zarrabeitia, D. Bresser, Y. Yang, S. Passerini, Layered oxide cathodes for Sodium-Ion Batteries: storage mechanism, Electrochemistry, and techno-economics. Acc. Chem. Res. 56, 284–296 (2023). https://doi.org/10.1021/acs.accounts.2c00690

    Article  CAS  Google Scholar 

  8. A.M. Skundin, T.L. Kulova, A.B. Yaroslavtsev, Sodium-ion batteries (a review). Russ J. Electrochem. 54, 113–152 (2018). https://doi.org/10.1134/S1023193518020076

    Article  CAS  Google Scholar 

  9. C. Liu, Z.G. Neale, G. Cao, Understanding electrochemical potentials of cathode materials in rechargeable batteries. Mater. Today. 19, 109–123 (2016). https://doi.org/10.1016/j.mattod.2015.10.009

    Article  CAS  Google Scholar 

  10. G. Pang, C. Yuan, P. Nie, J. Zhu, X. Zhang, H. Li, B. Ding, Design of nanoconfined MWNTs @ NaTi 2 (PO 4) 3 coaxial cables with superior rate capability and long-cycle life for Na-ion batteries. Appl. Mater. Today. 4, 54–61 (2016). https://doi.org/10.1016/j.apmt.2016.07.003

    Article  Google Scholar 

  11. Z.G. Liu, R. Du, X.X. He, J.C. Wang, Y. Qiao, L. Li, S.L. Chou, Recent progress on intercalation-based anode materials for low-cost sodium-ion batteries. ChemSusChem 14, 3724–3743 (2021). https://doi.org/10.1002/cssc.202101186

    Article  CAS  Google Scholar 

  12. P. Ma, D. Fang, Y. Liu, Y. Shang, Y. Shi, H.Y. Yang, MXene-Based materials for Electrochemical Sodium‐Ion Storage. Adv. Sci. 8, 2003185 (2021). https://doi.org/10.1002/advs.202003185

    Article  CAS  Google Scholar 

  13. J. Wang, P. Nie, B. Ding, S. Dong, X. Hao, H. Dou, X. Zhang, Biomass derived carbon for energy storage devices. J. Mater. Chem. A 5, 2411–2428 (2017). https://doi.org/10.1039/c6ta08742f

    Article  CAS  Google Scholar 

  14. S. Fang, D. Bresser, S. Passerini, Transit. Metal Oxide Anodes Electrochem. Energy Storage Lithium (2020). https://doi.org/10.1002/aenm.201902485

    Article  Google Scholar 

  15. T. Perveen, M. Siddiq, N. Shahzad, R. Ihsan, A. Ahmad, M.I. Shahzad, Prospects in anode materials for sodium ion batteries—a review, renew. Sustain. Energy Rev. (2020). https://doi.org/10.1016/j.rser.2019.109549

    Article  Google Scholar 

  16. S. Dong, N. Lv, Y. Wu, Y. Zhang, G. Zhu, X. Dong, Titanates for sodium-ion storage. Nano Today. 42, 101349 (2022). https://doi.org/10.1016/j.nantod.2021.101349

    Article  CAS  Google Scholar 

  17. Y. Mei, Y. Huang, Xianluo, Hu, Nanostructured Ti-based anode materials for Na-ion batteries. J. Mater. Chem. A 31, 12001–12013 (2016). https://doi.org/10.1039/C6TA04611H

    Article  CAS  Google Scholar 

  18. Z. Jian, Y. Hu, X. Ji, W. Chen, NASICON-Structured Mater. Energy Storage. (2017). https://doi.org/10.1002/adma.201601925

    Article  Google Scholar 

  19. M. Wu, W. Ni, J. Hu, J. Ma, NASICON-structured ­ NaTi 2 (PO 4) 3 for sustainable energy storage. Nano-Micro Lett. (2019). https://doi.org/10.1007/s40820-019-0273-1

    Article  Google Scholar 

  20. X. Yang, K. Wang, X. Wang, G. Chang, S. Sun, Carbon-coated NaTi 2 (PO 4) 3 composite: a promising anode material for sodium-ion batteries with superior Na-storage performance. Solid State Ionics. 314, 61–65 (2018). https://doi.org/10.1016/j.ssi.2017.11.016

    Article  CAS  Google Scholar 

  21. M. Li, L. Liu, P. Wang, J. Li, Q. Leng, G. Cao, Highly reversible sodium-ion storage in NaTi2(PO4)3/C composite nanofibers. Electrochim. Acta 252, 523–531 (2017). https://doi.org/10.1016/j.electacta.2017.09.020

    Article  CAS  Google Scholar 

  22. Z. Nie, Y. Huang, B. Ma, X. Qiu, N. Zhang, X. Xie, Nitrogen-doped carbon with modulated surface chemistry and porous structure by a stepwise biomass activation process towards enhanced electrochemical lithium-ion storage. Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-50330-w

    Article  Google Scholar 

  23. Z. Jiang, Y. Li, C. Han, Z. He, W. Ma, W. Meng, Y. Jiang, L. Dai, L. Wang, Superior lithium storage performance of hierarchical N-doped carbon encapsulated NaTi2(PO4)3 microflower. Ceram. Int. 46, 1954–1961 (2020). https://doi.org/10.1016/j.ceramint.2019.09.174

    Article  CAS  Google Scholar 

  24. G.B. Xu, L.W. Yang, X.L. Wei, J.W. Ding, J.X. Zhong, P.K. Chu, Hierarchical porous nanocomposite architectures from multi-wall carbon nanotube threaded mesoporous NaTi2(PO4)3 nanocrystals for high-performance sodium electrodes. J. Power Sources 327, 580–590 (2016). https://doi.org/10.1016/j.jpowsour.2016.07.089

    Article  CAS  Google Scholar 

  25. Z. Zhou, S. Gu, Y. Zhang, F. Wu, N. Zhou, Lithium storage performance improvement of NaTi2(PO4)3 with nitrogen-doped carbon derived from polyaniline. J. Alloys Compd. 767, 745–752 (2018). https://doi.org/10.1016/j.jallcom.2018.07.131

    Article  CAS  Google Scholar 

  26. D. Xu, P. Wang, R. Yang, Nitrogen-doped carbon decorated NaTi2(PO4)3 composite as an anode for sodium-ion batteries with outstanding electrochemical performance. Ceram. Int. 44, 7159–7164 (2018). https://doi.org/10.1016/j.ceramint.2018.01.160

    Article  CAS  Google Scholar 

  27. L.C. Zhang, Y. Zhou, Y.Q. Li, W.L. Ma, P. Wu, X.S. Zhu, S.H. Wei, Y.M. Zhou, Achieving in-situ hybridization of NaTi2(PO4)3 and N-doped carbon through a one-pot solid state reaction for high performance sodium-ion batteries. J. Solid State Chem. 310, 123036 (2022). https://doi.org/10.1016/j.jssc.2022.123036

    Article  CAS  Google Scholar 

  28. M. Shao, B. Wang, M. Liu, C. Wu, F.-S. Ke, X. Ai, H. Yang, Jiangfeng Qian, A high-voltage and cycle stable aqueous rechargeable Na-ion battery based on Na2Zn3 [Fe (CN) 6] 2–NaTi2 (PO4) 3 intercalation chemistry, ACS app. Energy Mater. 8, 5809–5815 (2019). https://doi.org/10.1016/j.electacta.2017.10.006

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Author A. M. is grateful to INSPIRE (IF160582) Fellowship Program of Department of Science & Technology, Government of India for financial support. The work was funded by the IMPRINT grant of by MHRD and Ministry of Road Transport and Highways vide sanction F. No.: 3–18/2015-TS-TS. I, dated. 29-11-2016. The authors like to acknowledge the FESEM facility sponsored by DST-FIST at Material Science Centre, IIT kharagpur and CRF of IIT kharagpur for other instrumental facilities.

Author information

Authors and Affiliations

Authors

Contributions

The work was done and manuscript was written by contributions of all authors. All authors have read the final version of the manuscript and approved it.

Corresponding author

Correspondence to Subhasish Basu Majumder.

Ethics declarations

Conflict of interest

All authors declare about their no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6137.4 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Banerjee, S. & Majumder, S.B. Improvement of sodium storage performance of N-doped carbon coated NaTi2(PO4)3 derived from polyvinyl pyrrolidone. J Mater Sci: Mater Electron 34, 1602 (2023). https://doi.org/10.1007/s10854-023-10982-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10982-x

Navigation