Skip to main content
Log in

Green synthesis of GO-loaded Ag/ZnO nanocomposites for methyl orange degradation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nature is a perfect laboratory for creating novel nanomaterials for a variety of applications. A robust green synthesis approach to GO-loaded Ag/ZnO nanocomposite materials using medicinal plant extraction and their potential application in methyl orange dye degradation are reported. The straightforward technique employs zinc and silver nitrate precursors in an aqueous solution of medicinal plant extract, causing the precipitation process. Prior to photocatalytic investigations, the physico-chemical properties of the material are analysed using TG-DTA, XRD, FE-SEM, TEM, EDAX and BET. The developed material showcase hexagonal wurtzite structure of ZnO, with face-centered-cubic phase of Ag and AgCl. All the samples exhibit aggregated, irregular rounded grains, as expected in the precipitation synthesis process. Pristine ZnO showed 15.5% degradation efficiency towards methyl orange, which was further improved by doping Ag from 0.5 to 2 mol%. The catalyst with 1 mol% Ag doping resulted in the better photocatalytic activity (26.30%), which has again improved by loading the GO (27.46%). The outcome of this study provides the new insights to GO-loaded Ag/ZnO nanocomposites by green synthesis route, in view of photocatalytic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data available on request.

References

  1. X. Chen, Z. Wu, D. Liu, Z. Gao, Nanoscale Res. Lett. 12, 143–153 (2017)

    Article  Google Scholar 

  2. D.Y. Nadargi, R.B. Dateer, M.S. Tamboli, I.S. Mulla, S.S. Suryavanshi, RSC Adv. 9(58), 33602–33606 (2019)

    Article  CAS  Google Scholar 

  3. A.F. Shaikh, S.S. Arbuj, M.S. Tamboli, S.D. Naik, S.B. Rane, B.B. Kale, Chem. Select. 2(28), 9174–9180 (2017)

    CAS  Google Scholar 

  4. M. Khatami, H.Q. Alijani, H. Heli, I. Sharifi, Ceram. Int. 44(13), 15596–15602 (2018)

    Article  CAS  Google Scholar 

  5. M.F. Khan, A.H. Ansari, M. Hameedullah, E. Ahmad, F.M. Husain, Q. Zia, U.M.R. Baig, M.M. Alam, A.M. Khan, Z.A. Al-Othman, Sci. Rep. 6(1), 1–2 (2016)

    Article  CAS  Google Scholar 

  6. L.C. Damonte, L.M. Zélis, B.M. Soucase, M.H. Fenollosa, Chem. Select. 148(1), 15–19 (2004)

    CAS  Google Scholar 

  7. J.K. Saha, R.N. Bukke, N.N. Mude, J. Jang, Sci. Rep. 10(1), 1–1 (2020)

    Article  Google Scholar 

  8. K.L. Orchard, M.S. Shaffer, C.K. Williams, Chem. Mater. 24(13), 2443–2448 (2012)

    Article  CAS  Google Scholar 

  9. B. Abdallah, M. Kakhia, A. Obaide, Plasmonics 16, 1549–1556 (2021)

    Article  CAS  Google Scholar 

  10. A. Moulahi, F. Sediri, Optik 127(19), 7586–7593 (2016)

    Article  CAS  Google Scholar 

  11. J. IravanIi, Green Chem. 13(10), 2638–2650 (2011)

    Article  Google Scholar 

  12. A.K. Mittal, Y. Chisti, U.C. Banerjee, Biotechnol. Adv. 31(2), 346–356 (2013)

    Article  CAS  Google Scholar 

  13. S. Ahmed, S.A. Chaudhry, S. Ikram, J. Photochem. Photobiol. B. 166, 272–284 (2017)

    Article  CAS  Google Scholar 

  14. S.S. Wagh, V.S. Kadam, C.V. Jagtap, D.B. Salunkhe, R.S. Patil, H.M. Pathan, S.P. Patole, ACS Omega 8(8), 7779–7790 (2023)

    Article  CAS  Google Scholar 

  15. S. Sarkar, D. Basak, Cryst. Eng. Commun. 15(37), 7606–7614 (2013)

    Article  CAS  Google Scholar 

  16. R.C. Pawar, D. Cho, C.S. Lee, Curr. Appl Phys. S13(2), S50–S57 (2013)

    Article  Google Scholar 

  17. R.C. Pawar, H. Kim, C.S. Lee, Scr. Mater. 68(2), 142–145 (2013)

    Article  CAS  Google Scholar 

  18. X.L. Yu, J.G. Song, Y.S. Fu, Y. Xie, X. Song, J. Sun, X.W. Du, J. Phys. Chem. C. 114(5), 2380–2384 (2010)

    Article  CAS  Google Scholar 

  19. Z. Guo, X. Chen, J. Li, J.H. Liu, X.J. Langmuir, Chem. Select. 27(10), 6193–6200 (2011)

    CAS  Google Scholar 

  20. O. Lupan, L. Chow, L.K. Ono, B.R. Cuenya, G. Chai, H. Khallaf, S. Park, A. Schulte, J. Phys. Chem. C. 114(29), 12401–12408 (2010)

    Article  CAS  Google Scholar 

  21. Y. Zheng, L. Zheng, Y. Zhan, X. Lin, Q. Zheng, K. Wei, Inorg. Chem. 46(17), 6980–6986 (2007)

    Article  CAS  Google Scholar 

  22. X.Z. Li, F.B. Li, Environ. Sci. Technol. 35(11), 2381–2387 (2001)

    Article  CAS  Google Scholar 

  23. M.J. Height, S.E. Pratsinis, O. Mekasuwandumrong, P. Praserthdam, Appl. Catal. B. 63(3–4), 305–312 (2006)

    Article  CAS  Google Scholar 

  24. X. Wang, X. Liu, Q. Han, P. Guo, J. Zhu, R. Yin, Inorg. Chem. Commun. 112, 107716 (2020)

    Article  CAS  Google Scholar 

  25. S. Gunal, N. Kaloglu, I. Ozdemir, S. Demir, I. Ozdemir, Inorg. Chem. Commun. 21, 142 (2012)

    Article  Google Scholar 

  26. S. Tao, M. Yang, H. Chen, S. Zhao, G. Chen, Ind. Eng. Chem. Res. 57(9), 3263 (2018)

    Article  CAS  Google Scholar 

  27. K. Saoud, R. Alsoubaihi, N. Bensalah, T. Bora, M. Bertino, J. Dutta, Mater. Res. Bull. 63, 134–140 (2015)

    Article  CAS  Google Scholar 

  28. N.A. Al-Rawashdeh, O. Allabadi, M.T. Aljarrah, ACS Omega 5(43), 28046–28055 (2020)

    Article  CAS  Google Scholar 

  29. P. Scherrer, Nachr. Ges. Wiss. Göttingen 26, 98–100 (1918)

    Google Scholar 

  30. S.S. Wagh, C.V. Jagtap, V.S. Kadam, S.F. Shaikh, M. Ubaidullah, B. Pandit, D.B. Salunkhe, R.S. Patil, Energy Environ. 17, 94–105 (2022)

    CAS  Google Scholar 

  31. J.S. Lee, K.H. You, C.B. Park, Adv. Mater. 24(8), 1084–1088 (2012)

    Article  CAS  Google Scholar 

  32. Y.H. Ng, I.V. Lightcap, K. Goodwin, M. Matsumura, P.V. Kamat, J. Phys. Chem. Lett. 1(15), 2222–2227 (2010)

    Article  CAS  Google Scholar 

  33. B. Li, H. Cao, J. Mater. Chem. 21(10), 3346–3349 (2011)

    Article  CAS  Google Scholar 

  34. V.V. Gawade, S.R. Sabale, R.S. Dhabbe, S.V. Kite, K.M. Garadkar, J. Mater Sci. 32, 28573–28586 (2021)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the CSIR, India, for financial support of this work (03(1389)/16/EMR-II).

Funding

Dr. Nadargi acknowledges the CSIR, India, for awarding Research Associate under the same scheme.

Author information

Authors and Affiliations

Authors

Contributions

Writing-original draft, and Investigation: DN, JDN. Methodology: MST, AMT. Validation: AU, NTNT. Conceptualization: IM, SSS.

Corresponding authors

Correspondence to Digambar Y. Nadargi, Nguyen Tam Nguyen Truong or Sharad S. Suryavanshi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadargi, D.Y., Nadargi, J.D., Tamboli, M.S. et al. Green synthesis of GO-loaded Ag/ZnO nanocomposites for methyl orange degradation. J Mater Sci: Mater Electron 34, 1568 (2023). https://doi.org/10.1007/s10854-023-10979-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10979-6

Navigation