Skip to main content
Log in

Design and synthesis of 4,5-diazafluorene ligands and their ruthenium (II) complexes for photoresponse performance on organic photodiodes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Efforts have been increased to create efficient photodiodes using a variety of interface layers such as organics, insulators, polymers, and metal oxides. Therefore, in this study, novel 4,5-diazafluorene ligands and their ruthenium (II) complexes were designed, synthesized, and elucidated by using 1H NMR, FT-IR, UV-Vis, and mass spectroscopic (LC–MS) methods. The NMR, FT-IR, UV-Vis, and LCMS spectrometer results explained and confirmed the structure of the 4,5-diazafluorene ligands and their ruthenium (II) complexes. The obtained 4,5-diazafluorene ligands and their ruthenium (II) complexes were used as interfacial layer for Schottky type photodiode and characterized by I−V measurements for various light power intensities. Various diode parameters such as rectification ratio, series resistance, and barrier height as well as ideality factor values were extracted and discussed in details. The results revealed that the fabricated Schottky type photodiodes with 4,5-diazafluorene ligands and their ruthenium (II) complex interlayers can be employed and improved for optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. K. Kloc, J. Mlochowski, Z. Szulc, J. Für. Prakt. Chem. 319, 959 (1977)

    Article  CAS  Google Scholar 

  2. J. Mlochowski, K. Kloc, Z. Szulc, Heterocycles. 9, 849 (1978)

    Article  Google Scholar 

  3. J. Druey, P. Schmidt, Helv. Chim. Acta. 33, 1080 (1950)

    Article  CAS  Google Scholar 

  4. G.E. Inglett, G. Frederick Smith, J. Am. Chem. Soc. 72, 842 (1950)

    Article  CAS  Google Scholar 

  5. V.T. Annibale, D. Song, Dalt. Trans. 45, 32 (2016)

    Article  CAS  Google Scholar 

  6. G.L. Lu, C.L. Ho, Q. Wang, W.Y. Wong, C.H. Chui, R.S.M. Wong, R. Gambari, F.Y. Lau, M.C.W. Yuen, C.S.W. Tong, A.K.W. Chan, J.C.O. Tang, K.P. Ho, G.Y.M. Cheng, Aust. J. Chem. 61, 975 (2008)

    Article  CAS  Google Scholar 

  7. R.A. Klein, P. Witte, R. van Belzen, J. Fraanje, K. Goubitz, M. Numan, H. Schenk, J.M. Ernsting, C.J. Elsevier, Eur. J. Inorg. Chem. 1998, 319 (1998)

    Article  Google Scholar 

  8. X. Wen, Y. Wu, Y. Tanaka, A. Awadasseid, H. Tao, W. Zhang, Life Sci. 269, 119066 (2021)

    Article  CAS  Google Scholar 

  9. K. Zhou, J. Liu, X. Xiong, M. Cheng, X. Hu, S. Narva, X. Zhao, Y. Wu, W. Zhang, Eur. J. Med. Chem. 178, 484 (2019)

    Article  CAS  Google Scholar 

  10. B. Deng, S. Zhang, C. Liu, W. Li, X. Zhang, H. Wei, C. Gong, RSC Adv. 8, 194 (2018)

    Article  CAS  Google Scholar 

  11. H. Li, B. Fan, D. Sun, J. Macromol. Sci. Part. A Pure Appl. Chem. 58, 811 (2021)

    Article  CAS  Google Scholar 

  12. Y. Yu, L.-Y. Bian, J.-G. Chen, Q.-H. Ma, Y.-X. Li, H.-F. Ling, Q.-Y. Feng, L.-H. Xie, M.-D. Yi, W. Huang, Y. Yu, L. Bian, J. Chen, Q. Ma, Y. Li, H. Ling, Q. Feng, L. Xie, M. Yi, W. Huang, Adv. Sci. 5, 1800747 (2018)

    Article  Google Scholar 

  13. H. Li, J. Wang, S. Zhang, C. Gong, F. Wang, RSC Adv. 8, 31889 (2018)

    Article  CAS  Google Scholar 

  14. S. Ghosh, A.S. Alghunaim, M.H. Al-Mashhadani, M.P. Krompiec, M. Hallett, I.F. Perepichka, J. Mater. Chem. C 6, 3762 (2018)

    Article  CAS  Google Scholar 

  15. J.N. Jaworski, C.V. Kozack, S.J. Tereniak, S.M.M. Knapp, C.R. Landis, J.T. Miller, S.S. Stahl, J. Am. Chem. Soc. 141, 10462 (2019)

    Article  CAS  Google Scholar 

  16. A. Kocyigit, M. Yilmaz, S. Aydogan, Ã. İncekara, H. Kacus, Mater. Sci. Semicond. Proc. 135, 106045 (2021)

    Article  CAS  Google Scholar 

  17. T. Nyberg, Synth. Met. 140, 281 (2004)

    Article  CAS  Google Scholar 

  18. M. Yıldırım, A. Kocyigit, Appl. Phys. A 128, 700 (2022)

    Article  Google Scholar 

  19. Z. Orhan, M. Yilmaz, S. Aydogan, M. Taskin, U. Incekara, Optik (Stuttg). 241, 167069 (2021)

    Article  CAS  Google Scholar 

  20. Y.J. Choi, H.J. Woo, S. Kim, J. Sun, M.S. Kang, Y.J. Song, J.H. Cho, J. Ind. Eng. Chem. 89, 233 (2020)

    Article  CAS  Google Scholar 

  21. X. Zou, Y. Li, G. Tang, P. You, F. Yan, Small. 15, 1901004 (2019)

    Article  Google Scholar 

  22. N.A. Al-Ahmadi, Mater. Res. Expr. 7, 032001 (2020)

    Article  CAS  Google Scholar 

  23. D.E. Yıldız, J. Mater. Sci. Mater. Electron. 29, 17802 (2018)

    Article  Google Scholar 

  24. D.E. Yildiz, H.H. Gullu, A. Sarilmaz, F. Ozel, A. Kocyigit, M. Yildirim, J. Mater. Sci. Mater. Electron. 31, 935 (2020)

    Article  CAS  Google Scholar 

  25. J.S. Chang, A.F. Facchetti, R. Reuss, IEEE J. Emerg. Sel. Top. Circ. Syst. 7, 7 (2017)

    Article  Google Scholar 

  26. K.-J. Baeg, M. Binda, D. Natali, M. Caironi, Y.-Y. Noh, Adv. Mater. 25, 4267 (2013)

    Article  CAS  Google Scholar 

  27. B.P. Sullivan, D.J. Salmon, T.J. Meyer, Inorg. Chem. 17, 3334 (2002)

    Article  Google Scholar 

  28. M.S. Deshpande, A.S. Kumbhar, J. Chem. Sci. 117, 153 (2016)

    Article  Google Scholar 

  29. M.K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Müller, P. Liska, N. Vlachopoulos, M. Grätzel, J. Am. Chem. Soc. 115, 6382 (1993)

    Article  CAS  Google Scholar 

  30. J. Pan, W. Deng, X. Xu, T. Jiang, X. Zhang, J. Jie, Chin. Phys B 28, 038102 (2019)

    Article  CAS  Google Scholar 

  31. M. İlhan, M.M. Koç, B. Coşkun, M. Erkovan, F. Yakuphanoğlu, J. Mater. Sci. Mater. Electron. 32, 2346 (2021)

    Article  Google Scholar 

  32. A. Barkhordari, S. Ozcelik, Å. Altindal, G. Pirgholi-Givi, H. Mashayekhi, Y. Azizian-Kalandaragh, Phys. Scr. 96, 085805 (2021)

    Article  Google Scholar 

  33. Z. Yuan, P.E. Low-Dimensional, Syst. Nanostruct. 56, 160 (2014)

    CAS  Google Scholar 

  34. Z. Yuan, J. Yu, W. Ma, Y. Jiang, Appl. Phys. A 106, 511 (2012)

    Article  CAS  Google Scholar 

  35. A. Gencer Imer, A. Dere, A.G. Al-Sehemi, O. Dayan, Z. Serbetci, A.A. Al-Ghamdi, F. Yakuphanoglu, Appl. Phys. A 125, 204 (2019)

    Article  CAS  Google Scholar 

  36. A.A. Hussaini, M.O. Erdal, K. Doğan, M. Koyuncu, M. Yildirim, Appl. Phys. A 129, 100 (2023)

    Article  CAS  Google Scholar 

  37. A. Kocyigit, A.A. Hussaini, M. Yıldırım, D.A. Kose, D.E. Yıldız, Appl. Organomet. Chem. 36, 6879 (2022)

    Article  Google Scholar 

  38. Ã. Güllü, S. Asubay, Å. Aydoǧan, A. Türüt, Phys. E Low-Dimens. Syst. Nanostruct. 42, 1411 (2010)

    Article  Google Scholar 

  39. I. Orak, A. Kocyigit, A. Turut, J. Alloys Compd. 691, 873 (2017)

    Article  CAS  Google Scholar 

  40. A. Kocyigit, Ä. Karteri, I. Orak, S. Uruş, M. Çaylar, Phys. E Low-Dimens. Syst. Nanostruct. 103, 452 (2018)

    Article  CAS  Google Scholar 

  41. L.D. Rao, V.R. Reddy, in AIP Conf. Proc (AIP Publishing LLC, 2016), p. 120020

  42. Ä. Taşçıoğlu, W.A. Farooq, R. Turan, Å. Altındal, F. Yakuphanoglu, J. Alloys Compd. 590, 157 (2014)

    Article  Google Scholar 

  43. H. Norde, J. Appl. Phys. 50, 5052 (1979)

    Article  CAS  Google Scholar 

  44. S. Sen, N.B. Manik, J. Phys. Commun. 5, 095010 (2021)

    Article  CAS  Google Scholar 

  45. M. Yilmaz, A. Kocyigit, B.B. Cirak, H. Kacus, U. Incekara, S. Aydogan, Mater. Sci. Semicond. Process. 113, 105039 (2020)

    Article  CAS  Google Scholar 

  46. S.K. Cheung, N.W. Cheung, Appl. Phys. Lett. 49, 85 (1986)

    Article  CAS  Google Scholar 

  47. A. Kaymaz, E.E. Baydilli, H.U. Tecimer, A. Altındal, Y. Azizian-Kalandaragh, Radiat. Phys. Chem. 183, 109 (2021)

    Article  Google Scholar 

  48. A. Kocyigit, Ä. Orak, J. Inst. Sci. Technol. 6, 57 (2016)

    Article  Google Scholar 

  49. A. Tataroğlu, Å. Altındal, Y. Azizian-Kalandaragh, Phys. B Condens. Matter. 576, 411733 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to state that the data used in this article are derived from Esma Yenel’s and Caner Cebeci’s PhD theses at Yıldız Technical University. We also would like to thank Ph.D. Tayfun Acar for his support in the mass analyzes of Ruthenium complexes.

Funding

This work was supported by The Scientific and Technological Research Council of Turkey (TUBITAK) Ph.D. Scholarship Program in Priority Areas (2211/C) and Council of Higher Education (YOK) Ph.D. Scholarship Program (100/2000) and partially supported by Selçuk University BAP office with 21401060 Project Number.

Author information

Authors and Affiliations

Authors

Contributions

EY was involved in conceptualization, investigation, experiments, methodology, writing the original draft, and corrections. MY was involved in characterization, and reviewing. CC contributed to writing, and editing. IE was involved in reviewing, and editing. AK contributed to experiments, characterization, writing the original draft, and corrections. MK contributed to reagents/materials/analysis tools, and reviewing.

Corresponding authors

Correspondence to Murat Yildirim or Ibrahim Erden.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1369.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yenel, E., Yildirim, M., Cebeci, C. et al. Design and synthesis of 4,5-diazafluorene ligands and their ruthenium (II) complexes for photoresponse performance on organic photodiodes. J Mater Sci: Mater Electron 34, 1605 (2023). https://doi.org/10.1007/s10854-023-10972-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10972-z

Navigation