Skip to main content
Log in

MOF derived CoFe-layered double hydroxide nanosheets for a high-performance hybrid supercapacitor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Rational design of surface of electrode material to avoid stacking is the key to develop new electrode materials with good electrochemical properties. In this paper, a ZIF-67 template method to synthesize CoFe-LDH nanosheets array with abundant active sites is developed in room temperature. The optimized CoFe-LDH electrode has a maximum specific capacitance of 1824 F g−1 at 1 A g−1 and excellent rate performance (82% at 5 A g−1), maintaining 91% of initial capacitance after 5000 cycles. The excellent properties come from the fact that MOF-derived CoFe-LDH inherits the layered structure of MOF, promotes the transfer of electrons and ions, enriches the active site, and coordinates the surface to avoid agglomeration. In addition, the assembled asymmetric SCs device assembled with activated carbon (AC) as the cathode and CoFe-LDH as the anode achieves a superior energy density of 31.56 Wh kg−1 at 750.1 W kg−1 with significant cycle stability (remained 84% of the initial capacitance after 10,000 cycles). Impressively, the design concepts of complex structures from metal–organic framework (MOF) derivatives shows great potential for use in energy storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. H.T. Das, P. Barai, S. Dutta, N. Das, P. Das, M. Roy, M. Alauddin, H.R. Barai, Polymers 14, 1053 (2022)

    Article  CAS  Google Scholar 

  2. D. Dhamodharan, P.P. Ghoderao, V. Dhinakaran, S. Mubarak, N. Divakaran, H.S. Byun, J. Ind. Eng. Chem. 106, 20–36 (2022)

    Article  CAS  Google Scholar 

  3. A.M. Mohamed, N.K. Allam, J. Energy Storage 47, 103565 (2022)

    Article  Google Scholar 

  4. O. Gerard, A. Numan, S. Krishnan, M. Khalid, R. Subramaniam, R. Kasi, J. Energy Storage 50, 104283 (2022)

    Article  Google Scholar 

  5. F. Xing, Z. Bi, F. Su, F. Liu, Z.S. Wu, Adv. Energy Mater. 12, 2200594 (2022)

    Article  CAS  Google Scholar 

  6. P.M. Yeletsky, M.V. Lebedeva, V.A. Yakovlev, J. Energy Storage 50, 104225 (2022)

    Article  Google Scholar 

  7. P. Bhojane, J. Energy Storage 45, 103654 (2022)

    Article  Google Scholar 

  8. A. Hao, X. Ning, Front. Mater. 8, 718869 (2021)

    Article  Google Scholar 

  9. M. Rezayeenik, M. Mousavi-Kamazani, S. Zinatloo-Ajabshir, Appl. Phys. A. 47, 129 (2022)

    Google Scholar 

  10. G. Hosseinzadeh, N. Ghasemian, S. Zinatloo-Ajabshir, Inorg. Chem. Commun. 136, 109144 (2022)

    Article  CAS  Google Scholar 

  11. S. Zinatloo-Ajabshir, M. Mousavi-Kamazani, Ceram. Int. 47, 23702–23724 (2021)

    Article  CAS  Google Scholar 

  12. S.M. Tabatabaeinejad, S. Zinatloo-Ajabshir, O. Amiri, M. Salavati-Niasari, RSC Adv. 11, 40100–40111 (2021)

    Article  CAS  Google Scholar 

  13. S. Zinatloo-Ajabshir, M. Salavati-Niasari, Composit. Part B: Eng. 174, 106930 (2019)

    Article  CAS  Google Scholar 

  14. S. Zinatloo-Ajabshir, M. Baladi, M. Salavati-Niasari, Ceram. Int. 47, 30178–30187 (2021)

    Article  CAS  Google Scholar 

  15. S. Zinatloo-Ajabshir, M.S. Morassaei, M. Salavati-Niasari, Composit. Part B: Eng. 167, 643–653 (2019)

    Article  CAS  Google Scholar 

  16. S.A. Heidari-Asil, S. Zinatloo-Ajabshir, H.A. Alshamsi, A. Al-Nayili, Q.A. Yousif, M. Salavati-Niasari, Int. J. Hydrogen Energy. 47, 16852–16861 (2022)

    Article  CAS  Google Scholar 

  17. W.J. Basirun, I.M. Saeed, M.S. Rahman, S.A. Mazari, Crit. Rev. Solid State. 46, 553–586 (2021)

    Article  CAS  Google Scholar 

  18. S. Mallakpour, Z. Radfar, C.M. Hussain, Appl. Clay Sci. 206, 106054 (2021)

    Article  CAS  Google Scholar 

  19. K. Nasrin, V. Sudharshan, K. Subramani, M. Sathish, Adv. Funct. Mater. 32, 211026 (2022)

    Article  Google Scholar 

  20. T. Yang, Q. Ye, Y. Liang, L. Wu, X. Long, X. Xu, F. Wang, J. Power Sources 449, 227590 (2020)

    Article  CAS  Google Scholar 

  21. T. Wang, S. Zhang, X. Yan, M. Lyu, L. Wang, J. Bell, H. Wang, Acs Appl. Mater. Inter. 9, 15510–15524 (2017)

    Article  CAS  Google Scholar 

  22. J. Zheng, X. Pan, X. Huang, D. Xiong, Y. Shang, X. Li, N. Wang, W.M. Lau, H.Y. Yang, Chem. Eng. J. 396, 125197–125205 (2020)

    Article  CAS  Google Scholar 

  23. Y. Wang, W. Zhang, X. Guo, Y. Liu, Y. Zheng, M. Zhang, R. Li, Z. Peng, Y. Zhao, Appl. Surf. Sci. 561, 150049 (2021)

    Article  CAS  Google Scholar 

  24. F. Liu, C. Wu, Y. Dong, C. Zhu, C. Chen, J. Colloid. Interface Sci. 628, 682–690 (2022)

    Article  CAS  Google Scholar 

  25. Q. Ma, F. Cui, J. Zhang, T. Cui, J. Colloid. Interface Sci. 629, 649–659 (2023)

    Article  CAS  Google Scholar 

  26. Y. Zhang, R. Yang, K. Zhang, A. Qin, S. Chen, X. Huang, H. Yin, Mater. Res. Bull. 157, 112036 (2023)

    Article  CAS  Google Scholar 

  27. F. Song, X. Ao, Q. Chen, J. Alloys Compd. 928, 167218 (2022)

    Article  CAS  Google Scholar 

  28. S.A. Mane, A.A. Kashale, G.P. Kamble, S.S. Kolekar, S.D. Dhas, M.D. Patil, A.V. Moholkar, B.R. Sathe, A.V. Ghule, J. Alloys Compd. 926, 166722 (2022)

    Article  CAS  Google Scholar 

  29. J. Park, S. Jo, N. Kitchamsetti, S. Zaman, J. Alloys Compd. 926, 166815 (2022)

    Article  CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinmin Xie.

Ethics declarations

Conflict of interest

The authors have not disclosed any competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 1591 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, X. MOF derived CoFe-layered double hydroxide nanosheets for a high-performance hybrid supercapacitor. J Mater Sci: Mater Electron 34, 1590 (2023). https://doi.org/10.1007/s10854-023-10970-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10970-1

Navigation