Skip to main content
Log in

Enhanced and stable gas sensing performance towards NH3 with AuCu alloy nanoparticles modification over SnO2

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The development of high-performance MOS-based sensor is imperative for NH3 monitoring in human breath analysis. Herein, we successfully modified SnO2 with bimetallic AuCu alloy nanoparticles (NPs) through facile reduction method, which showed an enhanced and stable NH3 sensing performance. The sensor based on Au0.5Cu0.3-SnO2 material had optimum selectivity and sensitivity for NH3, with a response value of 5.26 for 100 ppm NH3 at 400 °C, a threefold improvement over pure SnO2 sensor. The experimental results showed that bimetallic AuCu NPs modified materials had an obvious enhancement of chemisorbed oxygen on the interface, which can be attributed to the synergistic effect of Au and Cu, thus improving the consuming process of the target gas. In addition, the sensor also has a certain response to low concentration of NH3 with excellent repeatability and stability during 30 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files. It will be made available on request.

References

  1. L. Yang, J.Y. Yan, C.Z. Meng, A. Dutta, X. Chen, Y. Xue, G.Y. Niu, Y. Wang, S.J. Du, P. Zhou, C. Zhang, S.J. Guo, H.Y. Cheng, Adv. Mater. (2023). https://doi.org/10.21203/rs.3.rs-1909596/v1

    Article  Google Scholar 

  2. H.Y. Li, S.N. Zhao, S.Q. Zang, J. Li, Chem. Soc. Rev. 49(17), 6364–6401 (2020). https://doi.org/10.1039/x0xx00000x

    Article  CAS  Google Scholar 

  3. J.Y. Xu, H.L. Liao, C. Zhang, Food Chem. (2023). https://doi.org/10.1016/j.foodchem.2022.135204

    Article  Google Scholar 

  4. T.T. Zhou, P. Zhang, Z.Z. Yu, M. Tao, D.L. Zhou, B. Yang, T. Zhang, Nano Energy (2023). https://doi.org/10.1016/j.nanoen.2023.108216

    Article  Google Scholar 

  5. S. Cao, Y.F. Xu, Z.Z. Yu, P. Zhang, X.Y. Xu, N. Sui, T.T. Zhou, T. Zhang, Small 18(42), 2203715 (2022). https://doi.org/10.1002/smll.202203715

    Article  CAS  Google Scholar 

  6. H.L. Yan, Y.G. Zhou, Curr. Opin. Electrochem. (2022). https://doi.org/10.1016/j.coelec.2021.100922

    Article  Google Scholar 

  7. H. Chen, J. Chen, Y. Liu, B. Li, H. Li, X. Zhang, C. Lv, H. Dong, Langmuir 39(9), 3420–3430 (2023). https://doi.org/10.1021/acs.langmuir.2c03347

    Article  CAS  Google Scholar 

  8. B.A. Day, C.E. Wilmer, ACS Sens. 6(12), 4425–4434 (2021). https://doi.org/10.1021/acssensors.1c01808

    Article  CAS  Google Scholar 

  9. D. Ripepi, R. Zaffaroni, M. Kolen, J. Middelkoop, F.M. Mulder, Sustain. Energ. Fuels. 6(8), 1945–1949 (2022). https://doi.org/10.1039/d2se00123c

    Article  CAS  Google Scholar 

  10. B.K.S. Reddy, P.H. Borse, J. Electrochem. Soc. (2021). https://doi.org/10.1149/1945-7111/abf4ea

    Article  Google Scholar 

  11. W.Q. Yan, W. Ai, W. Liu, Z.Y. Zhao, X.H. Hu, S. Cui, X.D. Shen, J. Alloy. Compd. (2023). https://doi.org/10.1016/j.jallcom.2023.169042

    Article  Google Scholar 

  12. M. Verma, G. Bahuguna, A. Saharan, S. Gaur, H. Haick, R. Gupta, A.C.S. Appl, Mater. Interfaces. 15(4), 5512–5520 (2023). https://doi.org/10.1021/acsami.2c22417

    Article  CAS  Google Scholar 

  13. X.B. Ma, R. Gao, T. Zhang, X.M. Sun, T. Li, S. Gao, X.F. Zhang, Y.M. Xu, X.L. Cheng, L.H. Huo, Sens. Actuator B-Chem. (2023). https://doi.org/10.1016/j.snb.2022.132844

    Article  Google Scholar 

  14. F.J. Meng, R.F. Xin, S.X. Li, Materials. 16(1), 263 (2023). https://doi.org/10.3390/ma16010263

    Article  CAS  Google Scholar 

  15. D.Y. Nadargi, A. Umar, J.D. Nadargi, S.A. Lokare, S. Akbar, I.S. Mulla, S.S. Suryavanshi, N.L. Bhandari, M.G. Chaskar, J. Mater. Sci. 58(2), 559–582 (2023). https://doi.org/10.1007/s10853-022-08072-0

    Article  CAS  Google Scholar 

  16. L. Chen, H. Shi, C. Ye, X. Xia, Y. Li, C. Pan, Y. Song, J. Liu, H. Dong, D. Wang, X. Chen, Sensors Actuators B: Chem. (2023). https://doi.org/10.1016/j.snb.2022.132864

    Article  Google Scholar 

  17. T.V.K. Karthik, M.d.l.L. Olvera-Amador, A. Maldonado, A.G. Hernandez, H. Gómez-Pozos, J. Mater. Sci: Mater. Electronics. 34(3), 228 (2023). https://doi.org/10.1007/s10854-022-09636-1

  18. V. Krivetskiy, K. Zamanskiy, A. Beltyukov, A. Asachenko, M. Topchiy, M. Nechaev, A. Garshev, A. Krotova, D. Filatova, K. Maslakov, M. Rumyantseva, A. Gaskov, Nanomaterials 9(5), 728 (2019). https://doi.org/10.3390/nano9050728

    Article  CAS  Google Scholar 

  19. W. Liu, D. Gu, X. Li, A.C.S. Appl, Mater. Interfaces. 13(17), 20336–20348 (2021). https://doi.org/10.1021/acsami.1c02500

    Article  CAS  Google Scholar 

  20. C.C. Wang, J.H. Bai, H.T. Wang, Y. Li, Y.Y. Li, F.M. Liu, X.S. Liang, P. Sun, G.Y. Lu, Sens. Actuator B-Chem. (2022). https://doi.org/10.1016/j.snb.2021.130900

    Article  Google Scholar 

  21. J. Song, Z. Xu, M. Wu, X. Lu, Z. Yan, F. Chen, W. Chen, Molecules. 28(4), 1759 (2023). https://doi.org/10.3390/molecules28041759

  22. J.X. Ji, R.R. Li, H. Zhang, Y.N. Duan, Q. Liu, H.Z. Wang, Z.R. Shen, Appl. Catal. B-Environ. (2023). https://doi.org/10.1016/j.apcatb.2022.122020

    Article  Google Scholar 

  23. J.H. Bai, C.C. Wang, K.P. Liu, H.T. Wang, Y.Y. Liu, F.M. Liu, H. Suo, X.S. Liang, C. Zhang, F.M. Liu, C.G. Wang, P. Sun, G.Y. Lu, Sens. Actuator B-Chem. (2021). https://doi.org/10.1016/j.snb.2020.129375

    Article  Google Scholar 

  24. C.X. Sun, H.Y. Liu, J.K. Shao, G.F. Pan, X.L. Yang, M.J. Wang, J.Y. Dong, M.Y. Zhu, Y.H. Qi, Sens. Actuator B-Chem. (2023). https://doi.org/10.1016/j.snb.2022.132951

    Article  Google Scholar 

  25. A.K. Sra, R.E. Schaak, J. Am. Chem. Soc. 126(21), 6667–6672 (2004). https://doi.org/10.1021/ja031547r

    Article  CAS  Google Scholar 

  26. J.H. Bai, C.M. Sui, Y.Z. Liu, F.M. Liu, P. Sun, G.Y. Lu, Sens. Actuator B-Chem. (2023). https://doi.org/10.1016/j.snb.2022.132967

    Article  Google Scholar 

  27. S. Xie, C. Zhao, J. Shen, J. Wei, H. Liu, Y. Pan, Y. Zhao, Y. Zhu, ACS Sens. 8(2), 728–738 (2023). https://doi.org/10.1021/acssensors.2c02257

    Article  CAS  Google Scholar 

  28. M.J. Wang, T.Y. Hou, Z.R. Shen, X.D. Zhao, H.M. Ji, Sens. Actuator B-Chem. 292, 171–179 (2019). https://doi.org/10.1016/j.snb.2019.04.124

    Article  CAS  Google Scholar 

  29. A. Dey, Mater. Sci. Eng., B 229, 206–217 (2018). https://doi.org/10.1016/j.mseb.2017.12.036

    Article  CAS  Google Scholar 

  30. X.Y. Qiang, M. Hu, B.S. Zhao, Y. Qin, T.Y. Zhang, L.W. Zhou, J.R. Liang, Mater. Sci. Semicond. Process. 79, 113–118 (2018). https://doi.org/10.1016/j.mssp.2018.01.025

    Article  CAS  Google Scholar 

  31. Y.L. Wang, Y. Li, L. Yang, Z.Q. Liu, Y.Y. Li, J.H. Bai, F.M. Liu, X.S. Liang, P. Sun, G.Y. Lu, Sens. Actuator B-Chem. (2022). https://doi.org/10.1016/j.snb.2022.132623

    Article  Google Scholar 

  32. Q. Zhang, X.X. Qin, F.P. Duan-Mu, H.M. Ji, Z.R. Shen, X.P. Han, W.B. Hu, Angew. Chem.-Int. Edit. 57(30), 9351–9356 (2018). https://doi.org/10.1002/anie.201804319

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely acknowledge financially support by the National Natural Science Foundation of China (21872102 and 22172080) and the Tianjin “Project + Team” innovation team, 2020.

Funding

This work was supported by the National Natural Science Foundation of China (21872102 and 22172080) and the Tianjin “Project + Team” innovation team, 2020.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Min Zhou], [Qiuya Liu] [Zhenhua Cao] [Xiaowen Yang]and [Yingnan Duan]. The first draft of the manuscript was written by [Qiuya Liu] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yingnan Duan or Zhurui Shen.

Ethics declarations

Competing interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2831 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, M., Liu, Q., Cao, Z. et al. Enhanced and stable gas sensing performance towards NH3 with AuCu alloy nanoparticles modification over SnO2. J Mater Sci: Mater Electron 34, 1570 (2023). https://doi.org/10.1007/s10854-023-10941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10941-6

Navigation