Skip to main content
Log in

Influence of the electropolymerization time on polypyrrole-based counter electrode properties in dye-sensitized solar cell

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present work, uniform Polypyrrole (PPy) films were deposited on fluorine doped tin oxide substrates by chronoamperometry technique with various electropolymerization times. They were then investigated as counter electrodes (CEs) in dye-sensitized solar cells (DSSCs). Fourier transform infrared spectroscopy and contact angle measurements confirmed PPy polymerization efficiency. Scanning electron microscopy reveals the formation of unbounded PPy chains over the cauliflower structure at higher deposition times. The electrocatalytic activity of PPy films were found to decrease with increasing in deposition time. Similarly, the performance of PPy CE based-DSSCs is dependent upon polymer deposition time. DSSCs fabricated using PPy CE with 1s polymerization time exhibited higher photocurrent and thus superior power conversion efficiency. Electrochemical Impedance Spectroscopy suggests that the lower performance of DSSC with longer PPy deposition time is due to higher ion diffusion resistance in the porous structure of the formed unbounded PPy chains which retards the reduction of the triiodide ions \({ (I}_{3}^{-}\) ) at CE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. R.I. Malarselvi, G. Ragasudha, C.R. Raja, R. Priscilla, Mater. Today. (2021). https://doi.org/10.1016/j.matpr.2019.06.692

    Article  Google Scholar 

  2. S. Shalindra, B. Gunasekera, I. Rangeeka, P. Samodha, S. Gunathilaka, Sol. Energy. (2020). https://doi.org/10.1007/978-981-15-0675-8_17

    Article  Google Scholar 

  3. J.W. Li, Y. Chen, Y.F. Chen, J.X. Chen, C.F.J. Kuo, L.Y. Chen, C.W. Chiu, Polymers. (2021). https://doi.org/10.3390/polym13183103

    Article  Google Scholar 

  4. S. Çakar, M. Özacar, F. Fındık, Micro. Nanotechnol. (2022). https://doi.org/10.1016/B978-0-323-91179-5.00033-4

    Article  Google Scholar 

  5. H. Sun, Y. Luo, Y. Zhang, D. Li, Z. Yu, K. Li, Q. Meng, ACS Publications. (2010). https://doi.org/10.1021/jp1030015

    Article  Google Scholar 

  6. K. Sharma, V. Sharma, S.S. Sharma, Nanoscale. Res. Lett. (2018). https://doi.org/10.1186/s11671-018-2760-6

    Article  Google Scholar 

  7. D. Chen, Y. Zhao, Y. Fan, W. Wang, X. Li, Int. J. Hydrog. Energy. (2014). https://doi.org/10.1016/j.ijhydene.2013.12.075

    Article  Google Scholar 

  8. G. Yue, J. Wu, Y. Xiao, J. Mi. Huang, Lina, J.Y. Lin, J. Mater. Chem. A. (2013). https://doi.org/10.1039/c2ta00860b

    Article  Google Scholar 

  9. J.M. Pringle, V. Armel, D.R. MacFarlane, Chem. Commun. (2010). https://doi.org/10.1039/c0cc01400a

    Article  Google Scholar 

  10. H. Kim, G. Veerappan, J.H. Park, Electrochim. Acta. (2014). https://doi.org/10.1016/j.electacta.2014.06.012

    Article  Google Scholar 

  11. S. Shalindra, B. Gunasekera, I.R. Perera, S.S. Gunathilaka, Sol. Energy. (2019). https://doi.org/10.1007/978-981-15-0675-8_17

    Article  Google Scholar 

  12. K. Saranya, M. Rameez, A. Subramania, Eur. Polym. J. (2015). https://doi.org/10.1016/j.eurpolymj.2015. (01.049)

    Article  Google Scholar 

  13. H. Wenjing, X. Yaoming, H. Gaoy, Z. Haihan, Electrochim. Acta. (2016). https://doi.org/10.1016/j.electacta.2016.01.012

    Article  Google Scholar 

  14. M. Xingping, Y. Gentian, W. Jihuai, L. Zhang, Nanoscale Res. Lett. (2015). https://doi.org/10.1186/s11671-015-1015-z

    Article  Google Scholar 

  15. S.S. Jeon, C. Kim, J. Ko, S.S. Im, J. Mater. Chem. (2011). https://doi.org/10.1039/C1JM10112A

    Article  Google Scholar 

  16. C. Bu, Q. Tai, Y. Liu, S. Guo, X. Zhao, J. Power Sources.  (2013). https://doi.org/10.1016/j.jpowsour.2012.07.117

    Article  Google Scholar 

  17. F.Z. Tighilt, S. Belhousse, A. Rahal, K. Hamdani, N. Belhaneche, S. Sam, K. Lasmi, Silicon. (2022). https://doi.org/10.1007/s12633-021-01189-y

    Article  Google Scholar 

  18. K. Hamdani, M. Adnane, S. Sam, D. Chaumont, S. Belhousse, F.Z. Tighilt, K. Lasmi, A. Hamrani, Emerg. Mater. Res.  (2019). https://doi.org/10.1680/jemmr.18.00088

    Article  Google Scholar 

  19. A.G. Thate, K.S. Pakhare, S.S. Patil, V. Bhuse, Res. Chem. Intermed. (2023). https://doi.org/10.1007/s11164-022-04878-4

    Article  Google Scholar 

  20. E. Supriyanto, L. Ni’mah, S. Sujito, N. Alviati, A. Dikayanti, A.G.E. Sutjipto, AIP. Conf. Proc. (2023). https://doi.org/10.1063/5.0118273

    Article  Google Scholar 

  21. W. Hou, Y. Xiao, G. Han, Electrochim. Acta. (2016). https://doi.org/10.1016/j.electacta.2016.01.012

    Article  Google Scholar 

  22. A. Mollahosseini, E. Noroozian, Synth. Met. (2009). https://doi.org/10.1016/j.synthmet.2009.02.015

    Article  Google Scholar 

  23. M. Šetka, J. Drbohlavová, J. Hubálek, Sensors. (2017). https://doi.org/10.3390/s17030562

    Article  Google Scholar 

  24. X.M. Feng, Z.Z. Yan, R.M. Li, X.F. Liu, W.H. Hou, Polym. Bull. (2013). https://doi.org/10.1007/s00289-013-0952-x

    Article  Google Scholar 

  25. J. Jang, J. Bae, Sens. Actuators. B.: Chem. (2007). https://doi.org/10.1016/j.snb.2006.05.002

    Article  Google Scholar 

  26. C. Basavaraja, W.J. Kim, D.G. Kim, D.S. Huh, Mater. Chem. Phys. (2011). https://doi.org/10.1016/j.matchemphys.2011.05.057

    Article  Google Scholar 

  27. H.C. Kang, K.E. Geckeler, Polymer. (2000). https://doi.org/10.1016/S0032-3861(00)00116-6

    Article  Google Scholar 

  28. J. Huo, M. Zheng, Y. Tu, J. Wu, J. Mater. Sci.: Mater. Electron (2016). https://doi.org/10.1007/s10854-016-4478-5

    Article  Google Scholar 

  29. C.T. Thanh Thuy, J.H. Jung, S. Thogiti, W.S. Jung, K.S. Ahn, J.H. Kim, Eectrochim. Acta. (2016). https://doi.org/10.1016/j.electacta.2016.04.099

    Article  Google Scholar 

  30. M. Towannang, S. Pimanpang, A. Thiangkaew, P. Rutphonsan, W. Maiaugree, V. Harnchana, W. Jarernboon, V. Amornkitbamrung, Synth. Met. (2012). https://doi.org/10.1016/synthmet.2012.08.017

    Article  Google Scholar 

  31. K. Keothongkham, S. Pimanpang, W. Maiaugree, Int. J. Photoenergy. (2012). https://doi.org/10.1155/2012/671326

    Article  Google Scholar 

  32. S.C. Pradhan, S. Soman, Results. Surf. Interfaces. (2021). https://doi.org/10.1016/j.rsurfi.2021.100030

    Article  Google Scholar 

  33. S.G. Hashmi, G.G. Sonai, H. Iftikhar, P.D. Lund, A.F. Nogueira, Semicond. Sci. Technol. (2019). https://doi.org/10.1088/1361-6641/ab39f0

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the National Research Fund (DGRSDT) and the Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE).

Funding

All of the sources of funding for the work described in this publication are financed by the General Directorate for Scientific Research (DGRSDT) and the Semiconductor Research Center for Energy (CRTSE).

Author information

Authors and Affiliations

Authors

Contributions

FZT: Initiation of the work, polypyrrole grafting on the ITO and interpretation of the results. SB: Interpretation of FT-IR results. KH: Elaboration of photoanode. YA: Electrodeposition of Polypyrrole. MM: Study of electrocatalytic activity. HL: assembly of a dye cell. KL: Characterization of different structures by contact angle measurements.  AM: Interpretation of MEB results. NB: Contribution to the correction of the article. SS: Simulation and impedance study. 

Corresponding author

Correspondence to F. Z. Tighilt.

Ethics declarations

Competing interests

We wish to confirm that there are no known conflicts of interest associated with this publication.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tighilt, F.Z., Belhousse, S., Hamdani, K. et al. Influence of the electropolymerization time on polypyrrole-based counter electrode properties in dye-sensitized solar cell. J Mater Sci: Mater Electron 34, 1563 (2023). https://doi.org/10.1007/s10854-023-10902-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10902-z

Navigation