Skip to main content
Log in

A comprehensive insight into the parameters that influence the synthesis of Ag2MoO4 semiconductors via experimental design

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study characterized and statistically evaluated the influence of three parameters that potentially affect the synthesis of Ag2MoO4, which have not previously been investigated in conjunction. The study focused on the concentration of a dispersant (polyvinylpyrrolidone, PVP, mmol−1), aging time (h), and pH to evaluate the effects of these factors on the physio-chemical properties of the as-produced semiconductors. Particularly, this study aims to better understand the synthesis of metastable α-Ag2MoO4, which is poorly studied, and explore how minor modifications to the chosen parameters, under mild conditions, can impact its formation. To optimize the production of the α-phase, eleven Ag2MoO4 catalysts were produced by complete factorial experimental design, varying the aforementioned parameters. XRD results revealed that only two samples presented crystalline α-Ag2MoO4 and were significantly influenced by PVP concentration, pH, and their interaction. Additionally, prolonged aging favored an α to β transformation, reducing α content from 68 to 8%. These transformations are correlated with the thermodynamic stability of the crystal, which attempts to reach a more stable matrix. Furthermore, acidic pH modified the stabilization of Ag+ with PVP, enabling the formation of α-Ag2MoO4. The presence of the α phase was further confirmed by TGA/DTA, FTIR, and Raman spectroscopies results. Only PVP concentration significantly affected particle size, increasing it from ~ 4 to 8 μm upon PVP addition. Moreover, several morphologies were observed (butterfly like, potato like, coral like, polygons, etc.), potentially influencing their catalytic and antibacterial activities. Furthermore, a mechanism was proposed to elucidate how these factors affected the particles’ formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data and code availability

The data that support the findings of this study are available from the corresponding author, Daniela Gier Della Rocca, upon reasonable request.

References

  1. H. Guan, M. Shen, C. Harris, H. Lin, K. Wei, M. Morales, N. Bronowicha, S. Sun, Nanoscale 14, 6162 (2022)

    Article  CAS  Google Scholar 

  2. X. Fang, X. Cheng, Y. Zhang, L.G. Zhang, M. Keidar, J. Colloid Interface Sci. 509, 414 (2018)

    Article  CAS  Google Scholar 

  3. R.W.G. Wyckoff, J. Am. Chem. Soc. 44, 1994 (1922)

    Article  CAS  Google Scholar 

  4. A.K. Arora, R. Nithya, S. Misra, T. Yagi, J. Solid State Chem. 196, 391 (2012)

    Article  CAS  Google Scholar 

  5. J. Donohue, W. Shand, J. Am. Chem. Soc. 69, 222 (1947)

    Article  CAS  Google Scholar 

  6. D.G. DellaRocca, R.M. Peralta, R.A. Peralta, RdeFPM. Moreira, React. Kinet. Mech. Catal. 132, 1 (2021)

    Article  CAS  Google Scholar 

  7. A. Beltrán, L. Gracia, E. Longo, J. Andrés, J. Phys. Chem. C 118, 3724 (2014)

    Article  Google Scholar 

  8. E.A.C. Ferreira, N.F.A. Neto, A.A.G. Santiago, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. 31, 6510 (2020)

    Article  CAS  Google Scholar 

  9. P. Chen, J. Liu, B. Yang, M. Gao, L. You, Y. Zhang, Z. Li, L. Guo, T. Li, M. Liu, New J. Chem. 44, 3194 (2020)

    Article  Google Scholar 

  10. C.H.B. Ng, W.Y. Fan, Cryst. Growth Des. 15, 3032 (2015)

    Article  CAS  Google Scholar 

  11. D.G. Della Rocca, C.D. Moura-Nickel, H.F.V. Victória, G. Scaratti, K. Krambrock, A. De Noni, V.J.P. Vilar, R.F.P.M. Moreira, H. Jorge, Chemosphere 262, 127671 (2021)

    Article  CAS  Google Scholar 

  12. F.C. Fraga, D.G. Della Rocca, H.J. José, H.F.V. Victória, J.B. Gabriel Filho, K. Krambrock, E. Rodríguez-castell, RdeFPM. Moreira, J. Photochem. Photobiol. A 432, 114102 (2022)

    Article  CAS  Google Scholar 

  13. A. Zareie-Darmian, H. Farsi, A. Farrokhi, R. Sarhaddi, Z. Li, Phys. Chem. Chem. Phys. 23, 9539 (2021)

    Article  CAS  Google Scholar 

  14. E.A.C. Ferreira, N.F.A. Neto, A.A.G. Santiago, C.A. Paskocimas, M.R.D. Bomio, F.V. Motta, J. Mater. Sci. Mater. Electron. 31, 4271 (2020)

    Article  CAS  Google Scholar 

  15. M. Kumar, P. Devi, A. Kumar, J. Mater. Sci. Mater. Electron. 28, 5014 (2017)

    Article  CAS  Google Scholar 

  16. P. Jiang, S.Y. Li, S.S. Xie, Y. Gao, L. Song, Chemistry 10, 4817 (2004)

    Article  CAS  Google Scholar 

  17. D.P. Singh, B. Sirota, S. Talpatra, P. Kohli, C. Rebholz, S.M. Aouadi, J. Nanoparticle Res. 14, 1 (2012)

    CAS  Google Scholar 

  18. E.A.C. Ferreira, N.F. Andrade Neto, M.R.D. Bomio, F.V. Motta, Ceram. Int. 45, 11448 (2019)

    Article  CAS  Google Scholar 

  19. J.V.B. Moura, J.G. da Silva Filho, P.T.C. Freire, C. Luz-Lima, G.S. Pinheiro, B.C. Viana, J. Mendes Filho, A.G. Souza-Filho, G.D. Saraiva, Vib. Spectrosc. 86, 97 (2016)

    Article  CAS  Google Scholar 

  20. K. Suematsu, N. Ma, K. Watanabe, M. Yuasa, T. Kida, K. Shimanoe, Sensors 18, 1 (2018)

    Article  Google Scholar 

  21. C.C. De Foggi, R.C. De Oliveira, M. Assis, M.T. Fabbro, V.R. Mastelaro, C.E. Vergani, L. Gracia, J. Andrés, E. Longo, A.L. Machado, Mater. Sci. Eng. C 111, 110765 (2020)

    Article  Google Scholar 

  22. Y. Lv, C. Ye, J. Zhang, C. Guo, Microporous Mesoporous Mater. 293, 109812 (2020)

    Article  CAS  Google Scholar 

  23. Z. Wang, K. Dai, C. Liang, J. Zhang, G. Zhu, Mater. Lett. 196, 373 (2017)

    Article  CAS  Google Scholar 

  24. A. Rónavári, P. Bélteky, E. Boka, D. Zakupszky, N. Igaz, B. Szerencsés, I. Pfeiffer, Z. Kónya, M. Kiricsi, Int. J. Mol. Sci. 22, 8673 (2021)

    Article  Google Scholar 

  25. H.M. Rietveld, J. Appl. Crystallogr. 2, 65 (1969)

    Article  CAS  Google Scholar 

  26. P. Scherrer, Kolloidchem. Ein Lehrb. 277, 387 (1912)

    Article  Google Scholar 

  27. F.H.P. Lopes, L.F.G. Noleto, V.E.M. Vieira, P.B. de Sousa, A.C.S. Jucá, Y.L. Oliveira, K.R.B.S. Costa, M.A.P. Almeida, A.F. Gouveia, L.S. Cavalcante, J. Inorg. Organomet. Polym. Mater. 33, 424 (2023)

    Article  CAS  Google Scholar 

  28. E.S. Machlin, in An Introd. to Asp. Thermodyn. Kinet. Relev. to Mater. Sci. (Third Ed. (2007), pp. 289–318.

  29. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 87, 1051 (2015)

    Article  CAS  Google Scholar 

  30. N. Linares, A.M. Silvestre-Albero, E. Serrano, J. Silvestre-Albero, J. García-Martínez, Chem. Soc. Rev. 43, 7681 (2014)

    Article  CAS  Google Scholar 

  31. A.S. Cherevan, L. Deilmann, T. Weller, D. Eder, R. Marschall, ACS Appl. Energy Mater. 1, 5787 (2018)

    Article  CAS  Google Scholar 

  32. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  CAS  Google Scholar 

  33. R.S. Mulliken, J. Chem. Phys. 2, 782 (1934)

    Article  CAS  Google Scholar 

  34. A. Abulizi, K. Kadeer, L. Zhou, Y. Tursun, T. Dilinuer, J. Taiwan Inst. Chem. Eng. 88, 243 (2018)

    Article  CAS  Google Scholar 

  35. M. Singh, M. Goyal, K. Devlal, J. Taibah Univ. Sci. 12, 470 (2018)

    Article  Google Scholar 

  36. C. Xu, Y. Chen, X. Xie, K. Yan, Y. Si, M. Zhang, Q. Yan, J. Mater. Sci. Mater. Electron. 31, 8151 (2020)

    Article  CAS  Google Scholar 

  37. C.A. Oliveira, D.P. Volanti, A.E. Nogueira, C.A. Zamperini, C.E. Vergani, E. Longo, Mater. Des. 115, 73 (2017)

    Article  CAS  Google Scholar 

  38. W. Cao, Y. An, L. Chen, Z. Qi, J. Alloys Compd. 701, 350 (2017)

    Article  CAS  Google Scholar 

  39. F.B. Martí, F.L. Conde, S.A. Jimeno, J.H. Méndez, Química Analítica Cualitativa (1989)

  40. J. Zhang, Z. Ma, RSC Adv. 7, 2163 (2017)

    Article  CAS  Google Scholar 

  41. Y. Song, W. Xie, C. Yang, D. Wei, X. Su, L. Li, L. Wang, J. Wang, J. Mater. Res. Technol. 9, 5774 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial support from Brazil’s Coordination of Improvement of Higher Education Personnel (CAPES—Brazil) [Grant number 001, Project 88881.142487/2017-01] and from the National Council for Scientific and Technological Development (CNPq—Brazil) [Grant Nos. 405892/2013 6 and 142059/2019-6]. As well as LCME (Central Laboratory of Electronic Microscopy) for FEG-SEM images, Nanotec (Laboratory of Nanotechnology Applications in Civil Construction) for XRD analysis, EQA-UFSC analysis center for BET and FTIR spectroscopy analyses, and LINDEN (Interdisciplinary Laboratory for the Development of Nanostructures) for zeta potential and Raman spectroscopy analyses, respectively. E.R.A. and E.R.C. thank Ministerio de Ciencia e Innovación of Spain, projects PID2021-126235OB-C32 and TED2021-130756B-C31 and FEDER funds.

Funding

The Coordination of Improvement of Higher Education Personnel (CAPES—Brazil) [Grant code 001] and Brazil’s National Council for Scientific and Technological Development (CNPq—Brazil) [Grant Nos. 405892/2013 6 and 142059/2019–6] provided financial support. E.R.A. and E.R.C. thank Ministerio de Ciencia e Innovación of Spain, projects PID2021-126235OB-C32 and TED2021-130756B-C31 and FEDER funds.

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. The authors contributed equally. DGDR, ADNJ, and RFPMM conceived the project and developed the concept. DGDR, MS, FCF, ERA, ERC, and RAP conducted the material preparation, experiments, and data analysis. DGDR drafted this manuscript. MS, FCF, ERA, ERC, ADNJ, RAP, and RFPMM reviewed and edited the manuscript. All authors discussed and commented on the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Daniela G. Della Rocca.

Ethics declarations

Competing interests

Regina de Fatima Peralta Muniz Moreira reports financial support was provided by the Federal University of Santa Catarina.

Ethical approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4450 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Della Rocca, D.G., Schneider, M., Fraga, F.C. et al. A comprehensive insight into the parameters that influence the synthesis of Ag2MoO4 semiconductors via experimental design. J Mater Sci: Mater Electron 34, 1500 (2023). https://doi.org/10.1007/s10854-023-10897-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10897-7

Navigation