Skip to main content
Log in

Fabrication and characterization of high efficiency and stable Ag/AgFeO2/Ag3PO4 ternary heterostructures nanocatalyst

  • T.C. : Materials by Design Under Pressure: experiments and theory
  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

An Ag/AgFeO2/Ag3PO4 ternary was synthesized by hydrothermal method with polyvinylpyrrolidone (PVP). The composite materials were characterized by XRD, SEM, TEM, DRS and XPS. XRD, SEM and TEM results are used to characterize the structure and morphology of Ag/AgFeO2/Ag3PO4 samples, DRS results are mainly used to characterize the light absorption capacity of Ag/AgFeO2/Ag3PO4 samples. Photocatalytic results showed that the photocatalytic performance of Ag/AgFeO2/Ag3PO4 photocatalyst was significantly improved, which was 10.6 times than that of pure AgFeO2. The optimal photocatalyst can degrade MO (Methyl Orange) up to 98% in 1 h. Simultaneously, the cyclic experiments showed that it had good stability, from 80% for Ag/AgFeO2/AgPO4 to 58% for pure Ag3PO4 after five cycles. To obtain further insight into the high photooxidative activity of AgFeO2, ab initio density functional theory (DFT) calculations have also been carried out. The mechanism study shows that the synergistic effect of heterojunction and strong SPR of silver nanorods make the catalyst have higher photocatalytic performance and better stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Derived data supporting the findings of this study are available from the corresponding author on request.

References

  1. K. Fujishima, Honda, electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972). https://doi.org/10.1038/238037a0

    Article  ADS  Google Scholar 

  2. G.F. Liao, J.S. Fang, Q. Li, S. Li, Z.S. Xu, B.Z. Fang, Ag-Based nanocomposites: synthesis and applications in catalysis. Nanoscale 11, 7062–7096 (2019). https://doi.org/10.1039/c9nr01408j

    Article  Google Scholar 

  3. Z.Z. Lou, S. Kim, M. Fujitsuka, X.G. Yang, B.J. Li, T. Majima, Anisotropic Ag2S-Au triangular nanoprisms with desired configuration for plasmonic photocatalytic hydrogen generation in visible/near-infrared region. Adv. Funct. Mater. (2018). https://doi.org/10.1002/adfm.201706969

    Article  Google Scholar 

  4. F.Y. Chen, W.J. An, L. Liu, Y.H. Liang, W.Q. Cui, Highly efficient removal of bisphenol A by a three-dimensional graphene hydrogel-AgBr@rGO exhibiting adsorption/photocatalysis synergy. Appl. Catal. B 217, 65–80 (2017). https://doi.org/10.1016/j.apcatb.2017.05.078

    Article  Google Scholar 

  5. L. Liu, L. Ding, Y.G. Liu, W.J. An, S.L. Lin, Y.H. Liang, W.Q. Cui, A stable Ag3PO4@PANI core@shell hybrid: enrichment photocatalytic degradation with π-π conjugation. Appl. Catal. B 201, 92–104 (2017). https://doi.org/10.1016/j.apcatb.2016.08.005

    Article  Google Scholar 

  6. O. Akhavan, Lasting antibacterial activities of Ag–TiO2/Ag/a-TiO2 nanocomposite thin film photocatalysts under solar light irradiation. J. Colloid Interface Sci. 336, 117–124 (2009). https://doi.org/10.1016/j.jcis.2009.03.018

    Article  ADS  Google Scholar 

  7. Z.G. Yi, J.H. Ye, N. Kikugawa, T. Kako, S.X. Ouyang, H. Stuart-Williams, H. Yang, J.Y. Cao, W.J. Luo, Z.S. Li, Y. Liu, R.L. Withers, An orthophosphate semiconductor with phtooxidation properties under visible-light irradiation. Nat Mater. 9, 559–564 (2010). https://doi.org/10.1038/nmat2780

    Article  ADS  Google Scholar 

  8. J.W. Xu, Z.D. Gao, K. Han, Y.M. Liu, Y.Y. Song, Synthesis of magnetically separable Ag3PO4/TiO2/Fe3O4 heterostructure with enhanced photocatalytic performance under visible light for photoinactivation of bacteria. ACS Appl Mater Interfaces. 6, 15122–15131 (2014). https://doi.org/10.1021/am5032727

    Article  Google Scholar 

  9. S.X. Ouyang, N.K. Kikugawa, D. Chen, Z.G. Zou, J.H. Ye, A systematical study on photocatalytic properties of AgMO2 (M = Al, Ga, In): effects of chemical compositions, crystal structures, and electronic structures. J. Phys. Chem. C 113, 1560–1566 (2009). https://doi.org/10.1021/jp806513t

    Article  Google Scholar 

  10. C. Cui, Y.P. Wang, D.Y. Liang, W. Cui, H.H. Hu, B.Q. Lu, S. Xu, X.Y. Li, C. Wang, Y. Yang, Photo-assisted synthesis of Ag3PO4/reduced graphene oxide/Ag heterostructure photocatalyst with enhanced photocatalytic activity and stability under visible light. Appl. Catal. B 158–159, 150–160 (2014). https://doi.org/10.1016/j.apcatb.2014.04.007

    Article  Google Scholar 

  11. Y.H. Yan, H.Y. Guan, S. Liu, R.Y. Jiang, Ag3PO4/Fe2O3 composite photocatalysts with an n–n heterojunction semiconductor structure under visible-light irradiation. Ceram. Int. 40, 9095–9100 (2014). https://doi.org/10.1016/j.ceramint.2014.01.123

    Article  Google Scholar 

  12. J. Yan, C. Wang, H. Xu, Y.G. Xu, X.J. She, J.J. Chen, Y.H. Song, H. Li, Q. Zhang, AgI/Ag3PO4 heterojunction composites with enhanced photocatalytic activity under visible light irradiation. Appl. Surf. Sci. 287, 178–186 (2013). https://doi.org/10.1016/j.apsusc.2013.09.113

    Article  ADS  Google Scholar 

  13. C. Jin, G.L. Liu, L.H. Zu, Y. Qin, J.H. Yang, Preparation of Ag@Ag3PO4@ZnO ternary heterostructures for photocatalytic studies. J Colloid Interface Sci. 453, 36–41 (2015). https://doi.org/10.1016/j.jcis.2015.03.066

    Article  ADS  Google Scholar 

  14. G.Y. Zhao, L.J. Liu, J.R. Li, Q. Liu, Efficient removal of dye MB: through the combined action of adsorption and photodegradationfrom NiFe2O4/Ag3PO4. J. Alloy. Compd. 664, 169–174 (2016). https://doi.org/10.1016/j.jallcom.2016.01.004

    Article  Google Scholar 

  15. Z.M. Yang, G.F. Huang, W.Q. Huang, J.M. Wei, X.G. Yan, Y.Y. Liu, C. Jiao, Z. Wan, A. Pan, Novel Ag3PO4/CeO2 composite with high efficiency and stability for photocatalytic applications. J. Mater. Chem. 2, 1750–1756 (2014). https://doi.org/10.1039/c3ta14286h

    Article  Google Scholar 

  16. Y.Q. Wang, X.F. Cheng, X.T. Meng, H.W. Feng, S.G. Yang, C. Sun, Preparation and characterization of Ag3PO4/BiOI heterostructurephotocatalyst with highly visible-light-induced photocatalytic properties. J. Alloy. Compd. 632, 445–449 (2015). https://doi.org/10.1016/j.jallcom.2014.11.231

    Article  Google Scholar 

  17. X.F. Yang, H.Y. Cui, Y. Li, J.L. Qin, R.X. Zhang, H. Tang, Fabrication of Ag3PO4-graphene composites with highly efficient and stable visible light photocatalytic performance. ACS Catal. 3, 363–369 (2013). https://doi.org/10.1021/cs3008126

    Article  Google Scholar 

  18. W.F. Yao, B. Zhang, C.P. Huang, C. Ma, X.L. Song, Q.J. Xu, Synthesis and characterization of high efficiency and stable Ag3PO4/TiO2 visible light photocatalyst for the degradation of methylene blue and rhodamine B solutions. J. Mater. Chem. (2012). https://doi.org/10.1039/c2jm14410g

    Article  Google Scholar 

  19. Y.P. Bi, S.X. Ouyang, J.Y. Cao, J.H. Ye, Facile synthesis of rhombic dodecahedral AgX/Ag3PO4 (X = Cl, Br, I) heterocrystals with enhanced photocatalytic properties and stabilities. Phys Chem Chem Phys. 13, 10071–10075 (2011). https://doi.org/10.1039/c1cp20488b

    Article  Google Scholar 

  20. S. Kumar, T. Surendar, A. Baruah, V. Shanker, Synthesis of a novel and stable g-C3N4–Ag3PO4 hybrid nanocomposite photocatalyst and study of the photocatalytic activity under visible light irradiation. J. Mater. Chem. A. (2013). https://doi.org/10.1039/c3ta00186e

    Article  Google Scholar 

  21. M.R. Gholipour, C.T. Dinh, F. Béland, T.O. Do, Nanocomposite heterojunctions as sunlight-driven photocatalysts for hydrogen production from water splitting. Nanoscale 7, 8187–8208 (2015). https://doi.org/10.1039/c4nr07224c

    Article  ADS  Google Scholar 

  22. K.P. Ong, K. Bai, P. Blaha, P. Wu, Electronic structure and optical properties of AFeO2 (A: Ag, Cu) within GGA calculations. Chem. Mater. 19, 634–640 (2007). https://doi.org/10.1002/chin.200718002

    Article  Google Scholar 

  23. K.P. Ong, K.W. Bai, P. Wu, Realizing the semiconducting state of delafossite AgFeO2 by GGA+U calculations. J. Alloy. Compd. 449, 366–370 (2008). https://doi.org/10.1016/j.jallcom.2006.01.141

    Article  Google Scholar 

  24. D.D. Tang, G.K. Zhang, Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance. Appl. Surf. Sci. 391, 415–422 (2017). https://doi.org/10.1016/j.apsusc.2016.06.023

    Article  ADS  Google Scholar 

  25. Z. Song, Y.Q. He, Novel AgCl/Ag/AgFeO2 Z-scheme heterostructure photocatalyst with enhanced photocatalytic and stability under visible light. Appl. Surf. Sci. 420, 911–918 (2017). https://doi.org/10.1016/j.apsusc.2017.05.212

    Article  ADS  Google Scholar 

  26. D.D. Tang, G.K. Zhang, Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity. UltrasonSonochem. 37, 208–215 (2017). https://doi.org/10.1016/j.ultsonch.2017.01.010

    Article  Google Scholar 

  27. G. Tao, S.B. Zhang, C. Yao. Zhang, Study on the synthesis and photocatalysis of Ag3PO4 polyhedral microcrystals. Bull Mater Sci 43, 223 (2020). https://doi.org/10.1007/s12034-020-02190-8

    Article  Google Scholar 

  28. M. Fang, N. Tomas, T. Thomas, A.M. Anna, J. Ulf, Combinatorial magnetron sputtering of AgFeO2 thin films with the delafossite structure. Mater Des 91, 132–142 (2016). https://doi.org/10.1016/j.matdes.2015.11.092

    Article  Google Scholar 

  29. A.G. El-Shamy, A.A. Maati, W. Attia, K.M. Abd El-Kade, Promising method for preparation the PVA/Ag nanocomposite and Ag nano-rods. J. Alloys Compd. 744, 701–777 (2018). https://doi.org/10.1016/j.jallcom.2018.02.026

    Article  Google Scholar 

  30. M.S. Haider, G.N. Shao, S.M. Imran, S.S. Park, N. Abbas, M.S. Tahir, M. Hussain, W. Bae, H.T. Kim, Aminated polyethersulfone-silver nanoparticles (AgNPs-APES) composite membranes with controlled silver ion release for antibacterial and water treatment applications. Mater. Sci. Eng C 62, 732–745 (2016). https://doi.org/10.1016/j.msec.2016.02.025

    Article  Google Scholar 

  31. O. Akhavan, E. Ghaderi, Self-accumulated Ag nanoparticles on mesoporous TiO2 thin film with high bactericidal activities. Surf. Coat. Technol. 204, 3676–3683 (2010). https://doi.org/10.1016/j.surfcoat.2010.04.048

    Article  Google Scholar 

  32. D.D. Tang, G.K. Zhang, Ultrasonic-assistant fabrication of cocoon-like Ag/AgFeO2 nanocatalyst with excellent plasmon enhanced visible-light photocatalytic activity. Ultrason. Sonochem. 37, 208–215 (2017). https://doi.org/10.1016/j.ultsonch.2017.01.010

    Article  Google Scholar 

  33. U. Sulaeman, F. Febiyanto, S. Yin, T. Sato, The highly active saddle-like Ag3PO4 photocatalyst under visible light irradiation. Catal. Commun. 85, 22–25 (2016). https://doi.org/10.1016/j.catcom.2016.07.001

    Article  Google Scholar 

  34. J. Tauc, R. Grigorovici, A. Vancu, Optical properties and electronic structure of a morphous germanium. Basic solid state physics. Phys. Status Solidi 15, 627–637 (1966). https://doi.org/10.1002/pssb.19660150224

    Article  Google Scholar 

  35. M.R. Tubbs, Optical properties of solids. Nature 241, 75 (1973). https://doi.org/10.1038/241075a0

    Article  ADS  Google Scholar 

  36. E.A. Davis, N.F. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 179 (1970). https://doi.org/10.1080/14786437008221061

    Article  Google Scholar 

  37. F.S. Omar, H. Nay Ming, S.M. Hafiz, L.H. Ngee, Microwave synthesis of zinc oxide/ reduced graphene oxide hybrid for adsorption-photocatalysis application. Int J Photoenergy (2014). https://doi.org/10.1155/2014/176835

    Article  Google Scholar 

  38. J. Puneetha, K. Nagaraju, A. Rathna, Investigation of photocatalytic degradation of crystal violet and its correlation with bandgap in ZnO and ZnO/GO nanohybrid. Inorg. Chem. Commun. (2021). https://doi.org/10.1016/j.inoche.2021.108460

    Article  Google Scholar 

  39. H.M. Mukhair, A.H. Abdullah, Z.K. Zainal, H.N. Lim, PES-Ag3PO4/g-C3N4 mixed matrix film photocatalyst for degradation of methyl orange dye. Polymers 13, 1746 (2021). https://doi.org/10.3390/polym13111746

    Article  Google Scholar 

  40. Y. Feng, J. Shen, Q. Cai, H. Yang, Q. Shen, The preparation and properties of a g-C3N4/AgBr nanocomposite photocatalyst based on protonation pretreatment. New J. Chem. 39, 1132–1138 (2015). https://doi.org/10.1039/c4nj01433b

    Article  Google Scholar 

  41. Y. He, L. Zhang, X. Wang, Y. Wu, H. Lin, L. Zhao, W. Weng, H. Wan, M. Fan, Enhanced photodegradation activity of methyl orange over Z-scheme type MoO3/g-C3N4 composite under visible light Irradiation. RSC Adv. 4, 13610–13619 (2014). https://doi.org/10.1039/c4ra00693c

    Article  ADS  Google Scholar 

  42. H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, H. Wan, Novel visible-lightdriven AgX/graphite-like C3N4 (X = Br, I) hybrid materials with synergistic photocatalytic activity. Appl. Catal. B 129, 182–193 (2013). https://doi.org/10.1016/j.apcatb.2012.08.015

    Article  Google Scholar 

  43. H.Y. Hu, Z.B. Jiao, T. Wang, J.H. Ye, G.X. Lu, Y.P. Bi, Enhanced photocatalytic activity of Ag/Ag3PO4 coaxial hetero-nanowires. J. Mater. Chem. A. (2013). https://doi.org/10.1039/c3ta12061a

    Article  Google Scholar 

  44. L. Liu, Y.H. Qi, J.R. Lu, S.L. Lin, W.J. An, Y.H. Liang, W.Q. Cui, A stable Ag3PO4@g-C3N4 hybrid core@shell composite with enhanced visible light photocatalytic degradation. Appl. Catal. B 183, 133–141 (2016). https://doi.org/10.1016/j.apcatb.2015.10.035

    Article  Google Scholar 

  45. W.S. Wang, H. Du, R.X. Wang, T. Wen, A.W. Xu, Heterostructured Ag3PO4/AgBr/Ag plasmonic photocatalyst with enhanced photocatalytic activity and stability under visible light. Nanoscale 5, 3315–3321 (2013). https://doi.org/10.1039/c3nr00191a

    Article  ADS  Google Scholar 

  46. T.J. Yan, J. Tian, W.F. Guan, Z. Qiao, W.J. Li, J.M. You, B.B. Huang, Ultra-low loading of Ag3PO4 on hierarchical In2S3 microspheres to improve the photocatalytic performance: the cocatalytic effect of Ag and Ag3PO4. Appl. Catal. B 202, 84–94 (2017). https://doi.org/10.1016/j.apcatb.2016.09.017

    Article  Google Scholar 

  47. Y.P. Bi, H.Y. Hu, S.X. Ouyang, Z.B. Jiao, G.X. Lu, J.H. Ye, Selective growth of metallic Ag nanocrystals on Ag3PO4 submicro-cubes for photocatalytic applications. Chemistry 18, 14272–14275 (2012). https://doi.org/10.1002/chem.201201435

    Article  Google Scholar 

  48. D.B. Ingram, P. Christopher, J.L. Bauer, S. Linic, Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal. 1, 1441–1447 (2011). https://doi.org/10.1021/cs200320h

    Article  Google Scholar 

  49. Y. Lu, H.T. Yu, S. Chen, X. Quan, H.M. Zhao, Integrating plasmonic nanoparticles with TiO2 photonic crystal for enhancement of visible-light-driven photocatalysis. Environ. Sci. Technol. 46, 1724–1730 (2012). https://doi.org/10.1021/es202669y

    Article  ADS  Google Scholar 

  50. T. Torimoto, H. Horibe, T. Kameyama, K.I. Okazaki, S. Ikeda, M. Matsumura, A. Ishikawa, H. Ishihara, Plasmon-enhanced photocatalytic activity of cadmium sulfide nanoparticle immobilized on silica-coated gold particles. J. Phys. Chem. Lett. 2, 2057–2062 (2011). https://doi.org/10.1021/jz2009049

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Program of the “12th Five” Science and Technology Research of Education Department of Jilin Province ([2014]268).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhe Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Open access

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third-party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Z., Huang, G., Wei, H. et al. Fabrication and characterization of high efficiency and stable Ag/AgFeO2/Ag3PO4 ternary heterostructures nanocatalyst. Appl. Phys. A 128, 552 (2022). https://doi.org/10.1007/s00339-022-05647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05647-1

Keywords

Navigation