Skip to main content
Log in

Experimental and theoretical analysis of doping methylammonium lead iodide perovskite thin films with barium and magnesium

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 27 July 2023

This article has been updated

Abstract

We report on the study of barium (Ba) and magnesium (Mg)-doped methylammonium lead iodide (CH3NH3PbI3) deposited onto spin-coated titanium dioxide (TiO2) films, acting as the electron transport layer. Comprehensive characterizations of surface morphology, structural, elemental, and optical properties were carried out employing scanning electron microscopy, X-ray diffractometry, energy-dispersive X-ray spectrometry, and spectrophotometry techniques. In addition, first-principles density functional theory (DFT) calculations were performed to elucidate the electronic and optical characteristics of the doped CH3NH3PbI3 films. The results revealed that doping instigates the formation of evenly distributed, mesoporous grain-like clusters with crystalline structures. Specifics of the elemental composition, high absorbance, and band gap energy values were also discovered and are reported herein. Notably, the energy band gaps of the Ba and Mg-doped samples, CH3NH3Pb1−XBaXI3−2XCl2X and CH3NH3Pb1−XMgXI3−2XCl2X, were found to be 1.95 eV and 1.97 eV respectively, which are marginally higher than the 1.90 eV band gap of the pristine MAPbI3. The experimental energy band gaps are in reasonable agreement with our DFT-derived band gaps of 1.76 eV, 1.92 eV, and 2.05 eV for the pristine, Ba-doped, and Mg-doped samples, respectively. Optical characterization further showed that the Ba and Mg doping reduces the photon transmittance of the materials while concurrently promoting the Pb electronic states deeper into the conduction band. Based on these observations, our findings suggest that the introduction of Ba and Mg into the pristine CH3NH3PbI3 perovskite significantly enhances its performance, making it a highly suitable material for perovskite solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

Data will be made available on reasonable request.

Change history

References

  1. X. Tong, F. Lin, J. Wu, Z.M. Wang, Adv. Sci. 3, 1500201 (2016)

    Google Scholar 

  2. A.C. Nkele, I.S. Ike, S. Ezugwu, M. Maaza, F.I. Ezema, Int. J. Energy Res. 45, 1496 (2021)

    CAS  Google Scholar 

  3. S. Aharon, A. Dymshits, A. Rotem, L. Etgar, J. Mater. Chem. A 3, 9171 (2015)

    CAS  Google Scholar 

  4. M.-R. Ahmadian-Yazdi, M. Habibi, M. Eslamian, Appl. Sci. 8, 308 (2018)

    Google Scholar 

  5. T. Abzieher, S. Moghadamzadeh, F. Schackmar, H. Eggers, F. Sutterlüti, A. Farooq, D. Kojda, K. Habicht, R. Schmager, A. Mertens, R. Azmi, L. Klohr, J.A. Schwenzer, M. Hetterich, U. Lemmer, B.S. Richards, M. Powalla, U.W. Paetzold, Adv. Energy Mater. 9, 1802995 (2019)

    Google Scholar 

  6. W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, Science (2015). https://doi.org/10.1126/science.aad1015

    Article  Google Scholar 

  7. M.-C. Wu, W.-C. Chen, S.-H. Chan, W.-F. Su, Appl. Surf. Sci. 429, 9 (2018)

    CAS  Google Scholar 

  8. J. Akhtar, M. Aamir, M. Sher, in Perovskite Photovoltaics. ed. by S. Thomas, A. Thankappan (Academic Press, Cambridge, 2018), pp.25–42

    Google Scholar 

  9. N. Ashurov, B.L. Oksengendler, S. Maksimov, S. Rashiodva, A.R. Ishteev, D.S. Saranin, I.N. Burmistrov, D.V. Kuznetsov, A.A. Zakhisov, Mod. Electron. Mater. 3, 1 (2017)

    Google Scholar 

  10. H. Tang, S. He, C. Peng, Nanoscale Res. Lett. 12, 410 (2017)

    CAS  Google Scholar 

  11. M. Aamir, M.D. Khan, M. Sher, N. Revaprasadu, M.A. Malik, J. Akhtar, New. J. Chem. 42, 17181 (2018)

    CAS  Google Scholar 

  12. T. Abzieher, J.A. Schwenzer, F. Suttterlüti, M. Pfau, E. Lotter, M. Hetterich, U. Lemmer, M. Powalla, U.W. Paetzold, Organic, Hybrid, and Perovskite Photovoltaics XIX (International Society for Optics and Photonics, 2018), p. 107370J

  13. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    CAS  Google Scholar 

  14. A.C. Nkele, A.C. Nwanya, N.M. Shinde, S. Ezugwu, M. Maaza, J.S. Shaikh, F.I. Ezema, Int. J. Energy Res. (2020). https://doi.org/10.1002/er.5563

    Article  Google Scholar 

  15. A.C. Nkele, U.K. Chime, L. Asogwa, A.C. Nwanya, U. Nwankwo, K. Ukoba, T.C. Jen, M. Maaza, F.I. Ezema, Inorg. Chem. Commun. 112, 107705 (2020)

    CAS  Google Scholar 

  16. U. Nwankwo, S. Ngqoloda, A.C. Nkele, C.J. Arendse, K.I. Ozoemena, A.B.C. Ekwealor, R. Jose, M. Maaza, F.I. Ezema, RSC Adv. 10, 13139 (2020)

    CAS  Google Scholar 

  17. A.C. Nkele, U.K. Chime, A.C. Nwanya, D. Obi, R.U. Osuji, R. Bucher, P.M. Ejikeme, M. Maaza, F.I. Ezema, Vacuum. 161, 306 (2019)

    CAS  Google Scholar 

  18. V.C. Anitha, A.N. Banerjee, S.W. Joo, J. Mater. Sci. 50, 7495 (2015)

    CAS  Google Scholar 

  19. V. Pore, M. Dimri, H. Khanduri, R. Stern, J. Lu, L. Hultman, K. Kukli, M. Ritala, M. Leskelä, Thin Solid Films. 519, 3318 (2011)

    CAS  Google Scholar 

  20. C. Garzella, E. Comini, E. Tempesti, C. Frigeri, G. Sberveglieri, Sens. Actuators B 68, 189 (2000)

    CAS  Google Scholar 

  21. M.A. Al-Alwani, A.B. Mohamad, N.A. Ludin, A.A.H. Kadhum, K. Sopian, Renew. Sustain. Energy Rev. 65, 183 (2016)

    CAS  Google Scholar 

  22. S. Shakir, H.M. Abd-ur-Rehman, K. Yunus, M. Iwamoto, V. Periasamy, J. Alloys Compd. 737, 740 (2018)

    CAS  Google Scholar 

  23. D.R. Acosta, A.I. Martínez, A.A. López, C.R. Magaña, J. Mol. Catal. A: Chem. 228, 183 (2005)

    CAS  Google Scholar 

  24. Z. Yu, X. Chen, S.P. Harvey, Z. Ni, B. Chen, S. Chen, C. Yao, X. Xiao, S. Xu, G. Yang, Y. Yan, J.J. Berry, M.C. Beard, J. Huang, Adv. Mater. 34, 2110351 (2022)

    CAS  Google Scholar 

  25. G.C. Adhikari, S. Thapa, Y. Yue, H. Zhu, P. Zhu, Photonics. 8, 209 (2021)

    CAS  Google Scholar 

  26. N. Thakur, P. Kumar, P. Sharma, Mater. Today: Proc. (2023). https://doi.org/10.1016/j.matpr.2023.01.012

    Article  Google Scholar 

  27. F. Yang, M.A. Kamarudin, G. Kapil, D. Hirotani, P. Zhang, C.H. Ng, T. Ma, S. Hayase, ACS Appl. Mater. Interfaces. 10, 24543 (2018)

    CAS  Google Scholar 

  28. K. Liu, W. Duan, W. Fu, X. Ma, Z. Chen, C. Huang, J. Hu, in 2nd International Conference on Laser, Optics and Optoelectronic Technology (LOPET 2022) (SPIE, 2022), pp. 111–116

  29. S.R. Kumar, C. Suresh, A.K. Vasudevan, N.R. Suja, P. Mukundan, K.G.K. Warrier, Mater. Lett. 38, 161 (1999)

    Google Scholar 

  30. J. Bahadur, A.H. Ghahremani, S. Gupta, T. Druffel, M.K. Sunkara, K. Pal, Sol. Energy. 190, 396 (2019)

    CAS  Google Scholar 

  31. S.-H. Wei, L.G. Ferreira, J.E. Bernard, A. Zunger, Phys. Rev. B 42, 9622 (1990)

    CAS  Google Scholar 

  32. A. Van De Walle, Calphad. 33, 266 (2009)

    Google Scholar 

  33. P. Hohenberg, W. Kohn, Phys. Rev. R. –36, 8864 (1964)

    Google Scholar 

  34. J.P. Perdew, Rev. Lett. 77, 3865 (1996)

    CAS  Google Scholar 

  35. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, J. Phys.: Condens. Matter. 21, 395502 (2009)

    Google Scholar 

  36. D. Bende, F.R. Wagner, O. Sichevych, Y. Grin, Angew. Chem. 129, 1333 (2017)

    Google Scholar 

  37. D.R. Hamann, Phys. Rev. B 88, 085117 (2013)

    Google Scholar 

  38. M.J. Van Setten, M. Giantomassi, E. Bousquet, M.J. Verstraete, D.R. Hamann, X. Gonze, G.-M. Rignanese, Comput. Phys. Commun. 226, 39 (2018)

    Google Scholar 

  39. T. Thonhauser, S. Zuluaga, C.A. Arter, K. Berland, E. Schröder, P. Hyldgaard, Phys. Rev. Lett. 115, 136402 (2015)

    CAS  Google Scholar 

  40. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Phys. Rev. B 76, 125112 (2007)

    Google Scholar 

  41. A. Hosseini, K.C. Icli, M. Özenbaş, C. Ercelebi, Energy Procedia. 60, 191 (2014)

    CAS  Google Scholar 

  42. C. Amutha, A. Dhanalakshmi, B. Lawrence, K. Kulathuraan, V. Ramadas, B. Natarajan, Prog. Nanotechnol. Nanomater. 3, 13 (2014)

    Google Scholar 

  43. T. Veeramanikandasamy, K. Rajendran, K. Sambath, P. Rameshbabu, Mater. Chem. Phys. 171, 328 (2016)

    CAS  Google Scholar 

  44. O.O. Apeh, U. Chime, S.N. Agbo, S. Ezugwu, R. Taziwa, E. Meyer, P. Sutta, M. Maaza, F.I. Ezema, Mater. Res. Express (2018)

  45. A.C. Nkele, A.C. Nwanya, N.U. Nwankwo, R.U. Osuji, A.B.C. Ekwealor, P.M. Ejikeme, M. Maaza, F.I. Ezema, Adv. Nat. Sci.: Nanosci. Nanotechnol. 10, 045009 (2019)

    Google Scholar 

  46. A. Baktash, O. Amiri, A. Sasani, Superlattices Microstruct. 93, 128 (2016)

    CAS  Google Scholar 

  47. B.N. Ezealigo, A.C. Nwanya, S. Ezugwu, S. Offiah, D. Obi, R.U. Osuji, R. Bucher, M. Maaza, P. Ejikeme, F.I. Ezema, Arab. J. Chem. (2017). https://doi.org/10.1016/j.arabjc.2017.09.002

    Article  Google Scholar 

  48. W. Xiang, Z. Wang, D.J. Kubicki, X. Wang, W. Tress, J. Luo, J. Zhang, A. Hofstetter, L. Zhang, L. Emsley, M. Grätzel, A. Hagfeldt, Nat. Commun. 10, 4686 (2019)

    Google Scholar 

  49. F.F. Targhi, Y.S. Jalili, F. Kanjouri, Results Phys. 10, 616 (2018)

    Google Scholar 

  50. Z.-W. Xu, C.-R. Zhang, Y.-Z. Wu, J.-J. Gong, W. Wang, Z.-J. Liu, H.-S. Chen, Results Phys. 15, 102709 (2019)

    Google Scholar 

Download references

Funding

We graciously acknowledge the grant by Nigeria Communication Commission (NCC) under contract number NCC/R&D/UNN/014. Three of the authors, TCC, ATR and CEE are also thankful to the Center for High-Performance Computing (CHPC, Cape Town, South Africa), the University of South Africa (UNISA, Pretoria, South Africa) Research and Academic Computing facility and the Leigh University High Performance Computing Centre, respectfully, for providing the computational resources for this work.

Author information

Authors and Affiliations

Authors

Contributions

SCN: Experimentation, TCC: theoretical draft, ACN: writing original draft and taking correspondence. SE: Correcting original draft, PUA: correction of draft, ATR: methodology, CEE: characterization, FIE: supervision.

Corresponding authors

Correspondence to Agnes C. Nkele or Fabian I. Ezema.

Ethics declarations

Competing interests

The authors declare NO conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to update in first author's family name.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nnochin, S.C., Chibueze, T.C., Nkele, A.C. et al. Experimental and theoretical analysis of doping methylammonium lead iodide perovskite thin films with barium and magnesium. J Mater Sci: Mater Electron 34, 1490 (2023). https://doi.org/10.1007/s10854-023-10892-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10892-y

Navigation