Skip to main content
Log in

Structural, optoelectronic, and morphological study of indium-doped methylammonium lead chloride perovskites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic–inorganic lead halide perovskites have witnessed phenomenal success in the field of optoelectronics. Here, pure as well as indium (In)-doped methylammonium lead chloride (CH3NH3PbCl3) perovskite powders have been effectively synthesized for different atomic concentrations (at%) of In (0%, 10%, and 20%). The structural, optoelectronic, morphological, and elemental properties of as-prepared powders have been systematically investigated. Synthesized CH3NH3PbCl3 powders are cubic phase in nature and there is a rising trend of lattice constants and lattice volume with increasing amount of In doping. The small quantity of In (10%) enhances the surface morphology in terms of homogeneous surface and less pinhole defects, compared to pure lead perovskite. The doped perovskites depict broad peak in the ultra violet region of solar spectrum and causes enhanced peak intensities in the same region. The photoluminescence spectra indicate that 10% In-doped perovskite has higher crystallinity and lesser nonradiative recombination than 20% In-doped counterpart. This work delivers brief understanding for exploring the properties of In-doped perovskites and their potential as an optoelectronic material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Q. Wang, M. Lyu, M. Zhang, J. Yun, H. Chen, L. Wang, Transition from tetragonal to cubic phase of organohalide perovskite: the role of chlorine in crystal formation of CH3NH3PbI3 on TiO2 substrates. J. Phys. Chem. Lett. 6, 4379–4384 (2015)

    Google Scholar 

  2. N.D. Pham, V.T. Tiong, P. Chen, L. Wang, G.J. Wilson, J. Bell, H. Wang, Enhanced perovskite electronic properties via a modified lead (II) chloride lewis acid–base adduct and their effect in high-efficiency perovskite solar cells. J. Mater. Chem. A 5, 5195–5203 (2017)

    Google Scholar 

  3. A.A. Umar, A.Y.A. AlShe’irey, M.Y.A. Rahman, M.M. Salleh, M. Oyama, Perovskite-sensitized solar cells-based Ga–TiO2 nanodiatom-like photoanode: the improvement of performance by perovskite crystallinity refinement. Appl. Phys. A 124, 366 (2018)

    ADS  Google Scholar 

  4. T. Yamada, T. Aharen, Y. Kanemitsu, Near-band-edge optical responses of CH3NH3PbCl3 single crystals: photon recycling of excitonic luminescence. Phys. Rev. Lett. 120, 057404 (2018)

    ADS  Google Scholar 

  5. V. Adinolfi, O. Ouellette, M.I. Saidaminov, G. Walters, A.L. Abdelhady, O.M. Bakr, E.H. Sargent, Fast and sensitive solution-processed visible-blind perovskite UV photodetectors. Adv. Mater. 28, 7264–7268 (2016)

    Google Scholar 

  6. Y. Tian, Y. Ling, Y. Shu, C. Zhou, T. Besara, T. Siegrist, H. Gao, B. Ma, A solution-processed organometal halide perovskite hole transport layer for highly efficient organic light-emitting diodes. Adv. Electron. Mater. 2, 1600165 (2016)

    Google Scholar 

  7. A. Sadhanala, S. Ahmad, B. Zhao, N. Giesbrecht, P.M. Pearce, F. Deschler, R.L. Hoye, K.C. Gödel, T. Bein, P. Docampo, S.E. Dutton, Blue-green color tunable solution processable organolead chloride–bromide mixed halide perovskites for optoelectronic applications. Nano Lett. 15, 6095–6101 (2015)

    ADS  Google Scholar 

  8. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao, S.F. Liu, Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015)

    Google Scholar 

  9. H. Mashiyama, Y. Kurihara, T. Azetsu, Disordered cubic perovskite structure of CH3NH3PbX3 (X = Cl, Br, I). J. Korean Phys. Soc. 32, S156–S158 (1998)

    Google Scholar 

  10. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 32, 751–767 (1976)

    Google Scholar 

  11. T.Y. Zelenyak, K.R. Rakhmonov, K.T. Kholmurodov, P.P. Gladyshev, A.R. Tameev, Comparative characterization of relaxed organic–inorganic hybrid perovskite structures using molecular dynamic simulation and X-ray diffraction data. High Energy Chem. 52, 433–439 (2018)

    Google Scholar 

  12. D. Neagu, G. Tsekouras, D.N. Miller, H. Ménard, J.T. Irvine, In situ growth of nanoparticles through control of non-stoichiometry. Nat. Chem. 5, 916–923 (2013)

    Google Scholar 

  13. S.F. Hoefler, G. Trimmel, T. Rath, Progress on lead-free metal halide perovskites for photovoltaic applications: a review. Monatsh. Chem. 148, 795–826 (2017)

    Google Scholar 

  14. J.I. Pancove, Optical processes in semiconductors, 1st edn. (Dover, New York, 1975)

    Google Scholar 

  15. A. Zunger, Practical doping principles. Appl. Phys. Lett. 83, 57–59 (2003)

    ADS  Google Scholar 

  16. W. Bi, N. Louvain, N. Mercier, J. Luc, I. Rau, F. Kajzar, B. Sahraoui, A switchable NLO organic-inorganic compound based on conformationally chiral disulfide molecules and Bi(III) I5 iodobismuthate networks. Adv. Mater. 20, 1013–1017 (2008)

    Google Scholar 

  17. P. Van Mieghem, Theory of band tails in heavily doped semiconductors. Rev. Mod. Phys. 64, 755–793 (1992)

    ADS  Google Scholar 

  18. I. Studenyak, M. Kranjec, M. Kurik, Urbach rule in solid state physics. Int. J. Opt. Appl. 4, 76–83 (2014)

    Google Scholar 

  19. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, S. Hayase, CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004 (2014)

    Google Scholar 

  20. B.F. Hao, C.C. Stoumpos, D.H. Cao, R.P. Chang, M.G. Kanatzidis, Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photon. 8, 489–494 (2014)

    ADS  Google Scholar 

  21. F. Hao, C.C. Stoumpos, R.P. Chang, M.G. Kanatzidis, Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. J. Am. Chem. Soc. 136, 8094–8099 (2014)

    Google Scholar 

  22. U. Bansode, R. Naphade, O. Game, S. Agarkar, S. Ogale, Hybrid perovskite films by a new variant of pulsed excimer laser deposition: a room-temperature dry process. J. Phys. Chem. C 119, 9177–9185 (2015)

    Google Scholar 

  23. I. Kopacic, B. Friesenbichler, S.F. Hoefler, B. Kunert, H. Plank, T. Rath, G. Trimmel, Enhanced performance of germanium halide perovskite solar cells through compositional engineering. ACS ACS Appl. Energy Mater. 1, 343–347 (2018)

    Google Scholar 

  24. J. Navas, A. Sanchez-Coronilla, J.J. Gallardo, N.C. Hernandez, J.C. Pinero, R. Alcantara, C. Fernandez-Lorenzo, D.M. De los Santos, T. Aguilar, J. Martin-Calleja, New insights into organic inorganic hybrid perovskite CH3NH3PbI3 nanoparticles. An experimental and theoretical study of doping in Pb2+ sites with Sn2+, Sr2+, Cd2+ and Ca2+. Nanoscale 7, 6216–6229 (2015)

    ADS  Google Scholar 

  25. A. Kumar, K.R. Balasubramaniam, J. Kangsabanik, A. Alam, Crystal structure, stability, and optoelectronic properties of the organic-inorganic wide-band-gap perovskite CH3NH3BaI3: candidate for transparent conductor applications. Phys. Rev. B 94, 180105(R) (2016)

    ADS  Google Scholar 

  26. F. Yang, M.A. Kamarudin, G. Kapil, D. Hirotani, P. Zhang, C.H. Ng, T. Ma, S. Hayase, Magnesium-doped MAPbI3 perovskite layers for enhanced photovoltaic performance in humid air atmosphere. ACS Appl. Mater. Interfaces. 10, 24543–24548 (2018)

    Google Scholar 

  27. X. Li, Y. Guo, B. Luo, Improved stability and photoluminescence yield of Mn2+-doped CH3NH3PbCl3 perovskite nanocrystals. Crystals 8, 4 (2018)

    Google Scholar 

  28. X. Wu, H. Li, K. Wang, X. Sun, L. Wang, CH3NH3Pb1−xEuxI3 mixed halide perovskite for hybrid solar cells: the impact of divalent europium doping on efficiency and stability. RSC Adv. 8, 11095–11101 (2018)

    Google Scholar 

  29. P.K. Nayak, M. Sendner, B. Wenger, Z. Wang, K. Sharma, A.J. Ramadan, R. Lovrinčić, A. Pucci, P.K. Madhu, H.J. Snaith, Impact of Bi3+ heterovalent doping in organic–inorganic metal halide perovskite crystals. J. Am. Chem. Soc. 140, 574–577 (2018)

    Google Scholar 

  30. Z. Zhang, L. Ren, H. Yan, S. Guo, S. Wang, M. Wang, K. Jin, Bandgap narrowing in Bi-doped CH3NH3PbCl3 perovskite single crystals and thin films. J. Phys. Chem. C 121, 17436–17441 (2017)

    Google Scholar 

  31. Y. Yamada, M. Hoyano, R. Akashi, K. Oto, Y. Kanemitsu, Impact of chemical doping on optical responses in bismuth-doped CH3NH3PbBr 3 single crystals: carrier lifetime and photon recycling. J. Phys. Chem. Lett. 8, 5798–5803 (2017)

    Google Scholar 

  32. E. Mosconi, B. Merabet, D. Meggiolaro, A. Zaoui, F. De Angelis, First-principles modeling of bismuth doping in the MAPbI3 perovskite. J. Phys. Chem. C 122, 14107–14112 (2018)

    Google Scholar 

  33. J. Zhang, M.H. Shang, P. Wang, X. Huang, J. Xu, Z. Hu, Y. Zhu, L. Han, n-type doping and energy states tuning in CH3NH3Pb1−xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 1, 535–541 (2016)

    Google Scholar 

  34. S. Chatterjee, U. Dasgupta, A.J. Pal, Sequentially deposited antimony-doped CH3NH3PbI3 films in inverted planar heterojunction solar cells with a high open-circuit voltage. J. Phys. Chem. C 121, 20177–20187 (2017)

    Google Scholar 

  35. A.L. Abdelhady, M.I. Saidaminov, B. Murali, V. Adinolfi, O. Voznyy, K. Katsiev, E. Alarousu, R. Comin, I. Dursun, L. Sinatra, E.H. Sargent, O.F. Mohammed, O.M. Bakr, Heterovalent dopant incorporation for bandgap and type engineering of perovskite crystals. J. Phys. Chem. Lett. 7, 295–301 (2016)

    Google Scholar 

  36. J.T.W. Wang, Z. Wang, S. Pathak, W. Zhang, F. Wisnivesky-Rocca-Rivarola, J. Huang, P.K. Nayak, J.B. Patel, H.A.M. Yusof, Y. Vaynzof, R. Zhu, I. Ramirez, J. Zhang, C. Ducati, C. Grovenor, M.B. Johnston, D.S. Ginger, R.J. Nicholas, H.J. Snaith, Efficient perovskite solar cells by metal ion doping. Energy Environ. Sci. 9, 2892–2901 (2016)

    Google Scholar 

  37. L. Zhou, J. Su, Z. Lin, D. Chen, W. Zhu, C. Zhang, J. Zhang, J. Chang, Y. Hao, Theoretical and experimental investigation of mixed Pb–In halide perovskites. J. Phys. Chem. C 122, 15945–15953 (2018)

    Google Scholar 

  38. Z.K. Wang, M. Li, Y.G. Yang, Y. Hu, H. Ma, X.Y. Gao, L.S. Liao, High efficiency Pb–In binary metal perovskite solar cells. Adv. Mater. 28, 6695–6703 (2016)

    Google Scholar 

  39. J.M. Khurana, A. Chaudhary, B. Nand, A. Lumb, Aqua mediated indium (III) chloride catalyzed synthesis of fused pyrimidines and pyrazoles. Tetrahedron Lett. 53, 3018–3022 (2012)

    Google Scholar 

  40. O.-Y. Lee, K.-L. Law, C.-Y. Ho, D. Yang, Highly chemoselective reductive amination of carbonyl compounds promoted by InCl3/Et3SiH/MeOH system. J. Org. Chem. 73, 8829–8837 (2008)

    Google Scholar 

  41. W. Wang, H. Xu, J. Cai, J. Zhu, C. Ni, F. Hong, Z. Fang, F. Xu, S. Cui, R. Xu, L. Wang, F. Xu, J. Huang, Visible blind ultraviolet photodetector based on CH3NH3PbCl3 thin film. Opt. Express 24, 8411–8419 (2016)

    ADS  Google Scholar 

  42. K.T. Butler, J.M. Frost, A. Walsh, Band alignment of the hybrid halide perovskites CH3NH3PbCl3, CH3NH3PbBr3 and CH3NH3PbI3. Mater. Horiz. 2, 228–231 (2015)

    Google Scholar 

  43. Z. Yuan, W. Huang, S. Ma, G. Ouyang, W. Hu, W. Zhang, A high performance perovskite CH3NH3PbCl3 single crystal photodetector: benefiting from an evolutionary preparation process. J. Mater. Chem. C 7, 5442–5450 (2019)

    Google Scholar 

  44. N.K. Kumawat, X.-K. Liu, D. Kabra, F. Gao, Blue perovskite light-emitting diodes: progress, challenges and future directions. Nanoscale 11, 2109–2120 (2019)

    Google Scholar 

  45. E. Zheng, B. Yuh, G.A. Tosado, Q. Yu, Solution-processed visible-blind UV-A photodetectors based on CH3NH3PbCl3 perovskite thin films. J. Mater. Chem. C 5, 3796–3806 (2017)

    Google Scholar 

  46. Y.M. Xie, C. Ma, X. Xu, M. Li, Y. Ma, J. Wang, H.T. Chandran, C.S. Lee, S.W. Tsang, Revealing the crystallization process and realizing uniform 1.8 eV MAbased wide-bandgap mixed-halide perovskites via solution engineering. Nano Res. 12, 1033–1039 (2019)

    Google Scholar 

  47. P. Kubelka, F. Munk, Reflection characteristics of paints. Zeitschrift fur Technische Physik 12, 593–601 (1931)

    Google Scholar 

  48. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev. Mex. Fis. 53, 18–22 (2007)

    Google Scholar 

  49. E.L. Simmons, Diffuse reflectance spectroscopy: a comparison of the theories. Appl. Opt. 14, 1380–1386 (1975)

    ADS  Google Scholar 

  50. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Grätzel, Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2, 591 (2012)

    Google Scholar 

  51. R. Köferstein, L. Jäger, S.G. Ebbinghaus, Magnetic and optical investigations on LaFeO3 powders with different particle sizes and corresponding ceramics. Solid State Ion. 249, 1–5 (2013)

    Google Scholar 

  52. H. Lin, C.P. Huang, W. Li, C. Ni, S.I. Shah, Y.-H. Tseng, Size dependency of nanocrystalline TiO2 on its optical property and photocatalytic reactivity exemplified by 2-chlorophenol. Appl. Catal. B: Environ. 68, 1–11 (2006)

    Google Scholar 

  53. L. Brus, Electronic wave functions in semiconductor clusters: experiment and theory. J. Phys. Chem. 90, 2555–2560 (1986)

    Google Scholar 

  54. K.G. Saw, N.M. Aznan, F.K. Yam, S.S. Ng, S.Y. Pung, New insights on the Burstein-Moss shift and band gap narrowing in indium-doped zinc oxide thin films. PLoS One 10, e0141180 (2015)

    Google Scholar 

Download references

Acknowledgements

The authors are extending their gratitude to the SAIF, Department of Instrumentation & USIC, Gauhati University for XRD analysis and to the Department of Chemistry, National Institute of Technology, Silchar for providing fluorescence spectrophotometer facility. Sincere thanks to SAIF, IIT Bombay for FESEM analysis along with EDS. The authors are thankful to Prof. Sivaji Bandyopadhyay, Director, National Institute of Technology, Silchar for his continuous support in conducting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paramita Sarkar.

Ethics declarations

This work is funded by Early Career Research scheme (File no. ECR/2016/001404) under SERB, New Delhi, Government of India.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarkar, P., Mazumder, J., Tripathy, S.K. et al. Structural, optoelectronic, and morphological study of indium-doped methylammonium lead chloride perovskites. Appl. Phys. A 125, 580 (2019). https://doi.org/10.1007/s00339-019-2877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2877-1

Navigation