Skip to main content
Log in

Effects of doping nickel oxide in dilelectric property and electrical conductivity of poly (O-toluidine)

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

For higher electrical and dielectric properties, Poly (O-toluidine) (POT)–NiO nanocomposites have been made using an in-situ chemical polymerization process. NiO has been added in various weight percentages, such as 25, 50, and 75%, respectively. POT structure has been impacted by the deposition of NiO in varying weight percentage. Investigations have been carried out concerning structural, morphological, thermal, dielectric, and electrical conductivity. The XRD results have shown that the POT has undergone a range of structural changes, higher crystallinity as well as an enhancement in peak intensity. From the FTIR analysis, composite materials of the POT–NiO nanocomposites were analyzed. The absorption bands of the benzenoid and quinoid groups of POT are observed at 1497 and 1498 cm−1, respectively. –O–H bending of NiO was found at 1383 cm−1 for PNiO50 and 1603 cm−1 for PNiO75, respectively. Due to stronger intermolecular forces and less functional component degradation, POT doped with 75 weight percent NiO has higher thermal stability. Dielectric permittivity and electrical conductivity (σdc) were strengthened by factors such as rising the temperature and dopant concentration. Electrical conductivity varies from 3.4 × 10–5 to 1.4 S/cm, while dielectric permittivity spans from 1.52 to 8.41 F/m.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All the results were calculated or analyzed carefully. Graphs are plotted in Origin Pro 2015 and if requested all the data’s will be given. The datasets generated during electrical conductivity and dielectric properties are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Y.A. Ismail, A. Ahmad, F. Mohammad, J. Macromol. Sci. A 45, 650 (2008)

    Article  CAS  Google Scholar 

  2. N. Algethami, A. Rajeh, H.M. Ragab, J. Mater. Sci.: Mater. Electron. 33, 10645 (2022)

    CAS  Google Scholar 

  3. N.Y. Elamin, A. Modwi, W.A. El-Fattah, A. Rajeh, Opt. Mater. 135, 113323 (2023)

    Article  CAS  Google Scholar 

  4. H.M. Alghamdi, A. Rajeh, J. Inorg. Organomet. Polym. 32, 1935 (2022)

    Article  CAS  Google Scholar 

  5. H.M. Alghamdi, M.M. Abutalib, M.A. Mannaa, O. Nur, E.M. Abdelrazek, A. Rajeh, J. Mater. Res. Technol. 19, 3421 (2021)

    Article  Google Scholar 

  6. H.K. Rasheed, A.A. Kareem, J. Opt. Commun. 42, 25 (2021)

    Article  Google Scholar 

  7. E.M. Alharbi, A. Rajeh, J. Mater. Sci.: Mater. Electron. 33, 22196 (2022)

    CAS  Google Scholar 

  8. P. Kar, A. Choudhury, Adv. Polym. 32, 760 (2013)

    Article  Google Scholar 

  9. A.A. Kareem, Mater. Sci. Pol. 36, 283 (2018)

    Article  CAS  Google Scholar 

  10. S. Islam, G.B.V.S. Lakshmi, A.M. Siddiqui, M. Husain, M. Zulfequar, Int. J. Polym. Sci. (2013). https://doi.org/10.1155/2013/307525

    Article  Google Scholar 

  11. D.D. Borole, U.R. Kapadi, P.P. Kumbhar, D.G. Hundiwale, Mater. Lett. 56, 685 (2002)

    Article  CAS  Google Scholar 

  12. A. Elmansouri, A. Outzourhit, A. Oueriagli, A. Lachkar, N. Hadik, M.E. Achour, A. Abouelaoualim, K. Berrada, E.L. Ameziane, Active Passive Electron. Compon. 2007, 7 (2007)

    Article  Google Scholar 

  13. E. Soleimani, F.B. Niavarzi, J. Mater. Sci.: Mater. Electron. 29, 2392 (2018)

    CAS  Google Scholar 

  14. P. Kum-onsa, N. Phromviyo, Prasit Thongbai (2020). https://doi.org/10.1016/j.rinp.2020.103312

    Article  Google Scholar 

  15. L. Williams, A.R. Prasad, P. Sowmya, A. Joseph, Mater. Chem. Phys. 19, 3128 (2019)

    Google Scholar 

  16. G. Theophil Ananda, R. Nithiyavathia, R. Ramesha, S. John Sundarama, K. Kaviyarasu, Surf. Interfaces (2020). https://doi.org/10.1016/j.surfin.2020.100460

    Article  Google Scholar 

  17. R.K. Mandal, A.S. Mondal, S. Ghosh, A. Halder, T.P. Majumder, Res. Chem. (2023). https://doi.org/10.1016/j.rechem.2023.100810

    Article  Google Scholar 

  18. A.H. Salama, A.M. Abdel-Karim, Egypt. J. Chem. 61, 281 (2018)

    Article  Google Scholar 

  19. S. Islam, G.B.V.S. Lakshmi, A.M. Siddiqui, M. Husain, M. Zulfequar, Int. J. Polym. Sci. (2013). https://doi.org/10.1155/2013/307525

    Article  Google Scholar 

  20. A. Khan, I. Khan, A.M. Asiri, J. Saudi Chem. Soc. (2021). https://doi.org/10.1016/j.jscs.2021.101385

    Article  Google Scholar 

  21. S. Ahmad, M.M. Ali khan, F. Mohammad, ACS Omega (2018). https://doi.org/10.1021/acsomega.8b00825

    Article  Google Scholar 

  22. P. Kamatchi Selvaraj, S. Sivakumar, S. Selvaraj, Int. J. Chem. Sci. 16, 268 (2018)

    Google Scholar 

  23. M.T. Ramesan, V. Santhi, Synth. Compos. Interfaces 25, 725 (2018)

    Article  CAS  Google Scholar 

  24. H.S. Roy, M.M. Islam, M. Yousuf, A. Mollah, M.A.B. HasanSusan, Mater. Today: Proc. 5, 15267 (2018)

    Google Scholar 

  25. P. Singh, C.S. Kushwaha, S.K. Shukla, G.C. Dubey, Polym. Plast. Technol. Eng. 58, 139 (2019)

    CAS  Google Scholar 

  26. W.M. Aframehra, B. Molkia, R. Bagheria, P. Heidarianb, S.M. Davodia, Chem. Eng. Res. Des. 153, 789 (2020)

    Article  Google Scholar 

  27. R. Anbarasan, V. Sangeeth, M. Saravanan, R. Rajkumar, M. Anandhaalaguraja, V. Dhanalakshmi, J. Macromol. Sci. Phys. 50, 704 (2011)

    Article  CAS  Google Scholar 

  28. Sh.M. Ebrahim, A. Gad, A. Morsy, Synth. Met. 160, 2658 (2010)

    Article  CAS  Google Scholar 

  29. M.V. Kulkarni, A.K. Viswanath, P.K. Khanna, J. Macromol. Sci. A 43, 197 (2006)

    Article  CAS  Google Scholar 

  30. M.C. Gupta, S.S. Umare, Macromolecules 25, 138 (1992)

    Article  CAS  Google Scholar 

  31. M. Babazadeh, J. Appl. Polym. Sci. 113, 3980 (2009)

    Article  CAS  Google Scholar 

  32. A.M. El Sayed, G. Khabiri, J. Electron. Mater. 49, 2381 (2020)

    Article  Google Scholar 

  33. C. Fanggao, G. Saunders, E. Lambson, R. Hampton, G. Carini, G. Di Marco, M. Lanza, J. Polym. Sci. B. 34, 425 (1996)

    Article  CAS  Google Scholar 

  34. A. Hassan, A. Ashery, G. Khabiri, Phys. B Condens. Matter. 618, 413204 (2021)

    Article  CAS  Google Scholar 

  35. T.-C. Mo, H.-W. Wang, S.-Y. Chen, Y.-C. Yeh, Ceram. Int. 34, 1767 (2008)

    Article  CAS  Google Scholar 

  36. M.T. Ramesan, V. Santhi, Compos. Interfaces. 25, 725 (2018)

    Article  CAS  Google Scholar 

  37. K. Funke, R. Hoppe, Jump. Solid State Ion. 40, 200 (1990)

    Article  Google Scholar 

  38. S. Ding, X. Lu, J. Zheng, W. Zhang, J. Mater. Sci. Eng. B 135, 10 (2006)

    Article  CAS  Google Scholar 

  39. A.A. Khan, U. Baig, Solid State Sci. 15, 47 (2013)

    Article  CAS  Google Scholar 

  40. H. John, R.M. Thomas, K.T. Mathew, R. Joseph, J. Appl. Polym. Sci. 92, 592 (2004)

    Article  CAS  Google Scholar 

  41. M.V. Kulkarni, A.K. Viswanath, R. Marimuthu, U.P. Mulik, J. Mater. Sci.: Mater. Electron. 15, 781 (2004)

    CAS  Google Scholar 

  42. A. Choudhury, Mater. Chem. Phys. 130, 231 (2011)

    Article  CAS  Google Scholar 

  43. K.M. Ziadan, H.F. Hussein, K.I. Ajeel, Energy Procedia 18, 157 (2012)

    Article  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

HP (CA): Conceived of presented idea and carried out experiment. Worked out on characterization studies and analyzed data. VGC: Helped in making technical corrections and providing additional support as per reviewers comments.

Corresponding author

Correspondence to H. Praveen.

Ethics declarations

Competing interest

The author declare that they have no conflict of interest.

Ethical approval

This work complies with ethical standard. I had followed policy of research where all the results are genuine. This manuscript dose not noted any sexual comments. The results were formulated by following ethics.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveen, H., Chandran, V.G. Effects of doping nickel oxide in dilelectric property and electrical conductivity of poly (O-toluidine). J Mater Sci: Mater Electron 34, 1446 (2023). https://doi.org/10.1007/s10854-023-10884-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10884-y

Navigation