Skip to main content
Log in

Enhancing the optical properties of sodium 4-nitrophenolate dehydrate single crystals: role of second and third harmonic generation efficiencies

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A slow evaporation method has grown the sodium 4-nitrophenolate dehydrate (S4NPD) crystals. FTIR and Raman spectra have analyzed the chemical structure of synthesized S4NPD. The single crystal XRD and Powder XRD studies confirmed S4NPD crystal contains the orthorhombic crystal system. The UV–Vis absorption and transmittance analysis reveal that the grown crystal possesses an optical transmittance in the visible and NIR regions. The cut-off wavelength of the S4NPD is 435 nm, and these features are more appropriate for emerging optical fields. The photoluminescence spectrum shows the peak absorbed at 517 nm, indicating green light emission. The nonlinear optical properties with the enhancing role of the growth crystal’s second and third-harmonic generation efficiencies. The laser threshold damage (LDT) value shows the suitability of crystal coupled with high-power laser output applications. A chemical etching study was carried out to examine the growth pattern of the S4NPD crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S. Dinagaran, J. Gajendiran, S. Gokul Raj, S. Gnanam, Opt. Laser Technol. 156, 108576 (2022)

    CAS  Google Scholar 

  2. M. Buvaneswari, R. Santhakumari, C. Usha, R. Jayasreec, S. Sagadevan, J. Mol. Struct. 1243, 130856 (2021)

    CAS  Google Scholar 

  3. P. Karuppasamy, D. Joseph Daniel, H.J. Kim, M. Senthil Pandian, P. Ramasamy, J. Cryst. Growth. 535, 125528 (2020)

    CAS  Google Scholar 

  4. S. Devi, D. Jananakumar, Chinese J. Phys. 68, 339–347 (2020)

    CAS  Google Scholar 

  5. G. Liu, J. Liu, X. Zheng, Y. Liu, D. Yuan, X. Zhang, Z. Gao, X. Tao, CrystEngComm 17, 2569–2574 (2015)

    CAS  Google Scholar 

  6. S. Adhikari, S.K. Seth, T. Kar, CrystEngComm 15, 7372 (2013)

    CAS  Google Scholar 

  7. P. Purushothaman, K. Arulaabaranam, P. Palani, N. Durairaj, G. Mani, Ind. J. Phys. 15, 1–17 (2023)

    Google Scholar 

  8. P. Karuppasamy, T. Kamalesh, K. Anitha, M.S. Pandian, P. Ramasamy, S. Verma, J. Mol. Struct. 1210, 128036 (2020)

    CAS  Google Scholar 

  9. P. Karuppasamy, T. Kamalesh, K. Anitha, S. Abdul Kalam, M.S. Pandian, P. Ramasamy, S. Verma, S. Venugopal Rao, Opt. Mater. 84, 475–489 (2018)

    CAS  Google Scholar 

  10. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Opt. Mater. 79, 152–171 (2018)

    CAS  Google Scholar 

  11. J. Dalal, N. Sinha, H. Yadav, B. Kumar, RSC Adv. 5(71), 57735–57748 (2015)

    CAS  Google Scholar 

  12. M. Jose, R. Uthrakumar, A. Jeya Rajendran, S. Jerome, Spectrochim. Acta A. 86, 495–499 (2012)

    CAS  Google Scholar 

  13. S. Dinakaran, S. Verma, S.J. Das, CrystEngComm 13, 2375 (2011)

    CAS  Google Scholar 

  14. M. Dhavamurthy, G. Peramaiyan, R. Mohan, J. Cryst. Growth. 399, 13–18 (2014)

    CAS  Google Scholar 

  15. S. Selvakumar, M.S. Boobalan, S. Anthuvan, S. Ramalingam, A. Leo Rajesh, J. Mol. Struct. 1125, 1–11 (2016)

    CAS  Google Scholar 

  16. D. Sethupathi, M.S. Pandian, K.K. Maurya, P. Ramasamy, AIP Conf. Proc. 1832, 100003 (2017)

    Google Scholar 

  17. M. Ben Salah, P. Becker, C. Carabatos-Nédelec, Vib. Spectrosc 26(1), 23–32 (2001)

    CAS  Google Scholar 

  18. D. Lin-Vien, N.B. Colthup, W.G. Fatley, J.G. Grasselli, The handbook of infrared and Raman characteristic frequencies of organic molecules (Academic Press, New York, 1991)

    Google Scholar 

  19. R.A. Nyquist, R.O. Kagel, Infrared Spectra of Inorganic Compounds (Chemical Physics Research Laboratory, New York, 1971)

    Google Scholar 

  20. S. Selvakumar, A. Leo Rajesh, Optik 127(17), 6982–6990 (2016)

    CAS  Google Scholar 

  21. P. Das, T. Jaison Jose, A. Ghosh, P. Lakshmi Praveen, Eur. Phys. J. E 45(12), 98 (2022)

    CAS  Google Scholar 

  22. T.J. Jose, A. Simi, M. David Raju, P. Lakshmi Praveen, Mol. Cryst. Liq. Cryst. 650(1), 46–55 (2017)

    CAS  Google Scholar 

  23. R.K. Balachandar, S. Kalainathan, Spectrochim Acta Part A Mol. Biomol. Spectrosc. 126, 324–328 (2014)

    CAS  Google Scholar 

  24. N. Durairaj, S. Kalainathan, R. Kumar, Mechanics, Mech. Mater. Sci. Eng. MMSE 9 (2017).

  25. S. Kalainathan, N. Durairaj, R. Kumar, Int J. Soc. Mater. Eng. Resour. 23(1), 64–67 (2018)

    CAS  Google Scholar 

  26. P. Purushothaman, N. Durairaj, G. Mani, S. Kalainathan, J. Mater. Sci. Mater. 32(7), 8366–8374 (2021)

    CAS  Google Scholar 

  27. M. Jose, G. Bhagavannarayana, K. Sugandhi, S. Jerome Das, Mater. Lett. 64(12), 1369–1371 (2010)

    CAS  Google Scholar 

  28. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39(8), 3798–3813 (1968)

    CAS  Google Scholar 

  29. G. Lanzani (ed.), Photophysics of molecular materials: from single molecules to single crystals (Wiley, 2006)

    Google Scholar 

  30. T. Kamalesh, P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, J. Mat. Sci. Mat. 32, 6141–6157 (2021)

    CAS  Google Scholar 

  31. M. Thiyagarajan, G. Vinitha, J. Mater. Sci.: Mater. Electron. 33, 20911–20928 (2022)

    Google Scholar 

  32. N. Durairaj, S. Kalainathan, R. Kumar, Optik 140, 900–907 (2017)

    CAS  Google Scholar 

  33. S. Jeeva, S. Muthu, S. Tamilselvan, M. Lydia Caroline, P. Purushothaman, S. Sevvanthi, G. Vinitha, G. Mani, Chin. J. Phys. 56, 1449–1466 (2018)

    CAS  Google Scholar 

  34. E. Raju, P. Jayaprakash, P. Purushothaman, G. Vinitha, N. Saradha Devi, S. Kumaresan, Chem. Phys. Lett. 780, 138941 (2021)

    CAS  Google Scholar 

  35. S.P. Ramteke, M.I. Baig, M. Shkir, S. Kalainathan, M.D. Shirsat, G.G. Muley, M. Anis, Opt. Laser Technol. 104, 83–89 (2018)

    CAS  Google Scholar 

  36. P. Purushothaman, R. Gopathy, E. Raju, N. Durairaj, S. Kandhan, G. Mani, J. Mater. Sci. Mater. 32(17), 22342–22361 (2021)

    CAS  Google Scholar 

  37. N. Vijayan, G. Bhagavannarayana, K.R. Ramesh, R. Gopalakrisnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542–1546 (2006)

    CAS  Google Scholar 

  38. S. Kandhan, P. Krishnan, R. Jagan, S. Aravindhan, S. Srinivasan, S. Gunasekaran, Opt. Mater. 84, 556–563 (2018)

    CAS  Google Scholar 

  39. N. Durairaj, S. Kalainathan, M.V. Krishnaiah, Mater. Chem. Phys. 181, 529–537 (2016)

    CAS  Google Scholar 

  40. S. Chinnasami, R. Paulraj, P. Ramasamy, J. Mol. Struct. 1238, 130448 (2021)

    CAS  Google Scholar 

  41. P. Karuppasamy, S.P. Muthu, R. Perumalsamy, J. Cryst. Growth. 473, 39–54 (2017)

    Google Scholar 

  42. A. Rathika, M.A.L. Grace, R. Subramaniyan, R. Suja, Mater. Today: Proc. 47, 4741–4745 (2021)

    CAS  Google Scholar 

  43. P. Nagapandiselvi, C. Baby, R. Gopalakrishnan, Spectrochim. Acta A Mol. 147, 270–279 (2015)

    CAS  Google Scholar 

  44. M. Prakash, M. Lydia Caroline, D. Geetha, Spectrochim. Acta A Mol. 108, 32–37 (2013)

    CAS  Google Scholar 

  45. P. Suresh, S. Janarthanan, R. SugarajSamuel, A. JestinLenus, C. Shanth, Spectrochim. Acta A Mol. 135, 732–735 (2015)

    CAS  Google Scholar 

  46. V. Sivasubramani, M. Anis, S.S. Hussaini, G.G. Muley, M.S. Pandian, P. Ramasamy, Mater. Res. Innov. 21(7), 426–433 (2017)

    CAS  Google Scholar 

  47. N. Sowmya, N. Swarna, S. Sampathkrishnan, Y. Vidyalakshmi, S. Sudhahar, and R. Mohan Kumar 145, 333–339 (2015)

    Google Scholar 

  48. M. DivyaBharathi, G. Ahila, J. Mohana, G. Chakkaravarthi, G. Anbalagan, Mater. Chem. Phys. 192, 215–227 (2017)

    CAS  Google Scholar 

  49. J. Mohana, G. Ahila, M. DivyaBharathi, G. Anbalagan, J. Cryst. Growth. 450, 181–189 (2016)

    CAS  Google Scholar 

  50. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, X. Xu, F. Zhang, RSC Adv. 6, 14490–14495 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge SAIF-IIT Madras, for providing a Single-crystal XRD facility. The authors also thank Crystal Growth Centre, Anna University for providing UV, PL, Raman and VIT Chennai for Third harmonic generation.

Author information

Authors and Affiliations

Authors

Contributions

KV: Investigation, Writing—original draft; PP: Formal analysis, Methodology & Visualization; M. Thiyagarajan: Visualization & Formal analysis; SK: Drafting, Writing & Editing; SV: Formal analysis, Methodology & Visualization; HS: Writing—review & editing; G. Vinitha: Visualization, Writing & Editing; P. Purushothaman: Validation, Visualization; Writing, Review & Editing;

Corresponding author

Correspondence to P. Purushothaman.

Ethics declarations

Competing interest

The author(s) declare(s) that there is no competing of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayakumar, K., Palani, P., Thiyagarajan, M. et al. Enhancing the optical properties of sodium 4-nitrophenolate dehydrate single crystals: role of second and third harmonic generation efficiencies. J Mater Sci: Mater Electron 34, 1473 (2023). https://doi.org/10.1007/s10854-023-10876-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10876-y

Navigation