Skip to main content
Log in

Synthesis, crystal growth, and physicochemical characterization of 4-aminopyridinium 4-nitrophenolate 4-nitrophenol (4AP4NP) single crystals for NLO applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The organic nonlinear optical (NLO) single crystal of 4-aminopyridinium 4-nitrophenolate 4-nitrophenol (4AP4NP) single crystal was grown by the solution method at room temperature. The unit cell parameters of the grown 4AP4NP single crystal were confirmed by single-crystal X-ray diffraction (SXRD) measurement. The various (hkl) planes of the grown crystal and their average lattice strain were analyzed by powder X-ray diffraction (PXRD). The crystalline perfection of the 4AP4NP single crystal was analyzed by high-resolution X-ray diffraction (HRXRD) measurement. The optical quality of 4AP4NP single crystal and its cut-off energy were analyzed by UV–Vis–NIR. The photoluminescence (PL) study reveals that the grown crystal has high-intense green emission at 500 nm. The thermal stability of the grown crystal was analyzed by TG/DTA. The mechanical stability was analyzed by Vickers microhardness measurement. The dislocation density of 4AP4NP crystal has been investigated by etching studies. Laser-induced damage threshold (LDT) of the 4AP4NP crystal was analyzed by Q-switched Nd:YAG laser of wavelength 532 nm. The optical homogeneity of 4AP4NP was determined by the birefringence interferometry technique. The dielectric measurement has been carried on the grown crystal. The electronic polarizability (α*) of the grown crystal was determined by various theoretical calculations. The second-harmonic generation (SHG) and third-order nonlinear optical properties of the grown 4AP4NP crystal were analyzed by Kurtz–Perry powder and Z-scan technique, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. K.S. Huang, D. Britton, the late M.C. Ettera, S.R. Byrn, J. Mater. Chem. 7, 713–720 (1997)

  2. O.P. Kwon, M. Jazbinsek, H. Yun, J.I. Seo, J.Y. Seo, S.J. Kwon, Y.S. Lee, P. Gunter, CrystEngComm 11, 1541–1544 (2009)

    Article  CAS  Google Scholar 

  3. X. Zhang, X. Jiang, Y. Li, Z. Lin, G. Zhang, Y. Wu, CrystEngComm 17, 1050–1055 (2015)

    Article  CAS  Google Scholar 

  4. J.H. Jeong, B.J. Kang, J.S. Kim, M. Jazbinsek, S.H. Lee, S.C. Lee, I.H. Baek, H. Yun, J. Kim, Y.S. Lee, J.H. Lee, J.H. Kim, F. Rotermund, O.P. Kwon, Sci. Rep. 3, 1–8 (2013)

    Article  Google Scholar 

  5. V. Krishnakumar, M. Rajaboopathi, R. Nagalakshmi, Phys. B 407, 1119–1123 (2012)

    Article  CAS  Google Scholar 

  6. D.R. Kanis, M.A. Ratner, T. Marks, J. Chem. Rev. 94, 195–242 (1994)

    Article  CAS  Google Scholar 

  7. T.J. Marks, M.A. Ratner, Angew. Chem. Int. Ed. Engl. 34, 155–173 (1995)

    Article  CAS  Google Scholar 

  8. S.I.V. Judge, C.T. Bever, Pharmacol. Ther. 111(1), 224–259 (2006)

    Article  CAS  Google Scholar 

  9. A.D. Goodman, R.T. Stone, Neurotherapeutics 10, 106–110 (2013)

    Article  CAS  Google Scholar 

  10. P. Srinivasan, Y. Vidyalakshmi, R. Gopalakrishnan, Cryst. Growth Des. 8, 2329–2334 (2008)

    Article  CAS  Google Scholar 

  11. I.M. Pavlovetc, S. Draguta, M.I. Fokina, T.V. Timofeeva, I.Y. Denisyuk, Opt. Commun. 362, 64–68 (2016)

    Article  CAS  Google Scholar 

  12. R. Montis, M.B. Hursthouse, CrystEngComm 14, 7466–7478 (2012)

    Article  CAS  Google Scholar 

  13. S. Draguta, M.S. Fonari, A.E. Masunov, J. Zazueta, S. Sullivan, MYu. Antipin, T.V. Timofeeva, CrystEngComm 15, 4700–4710 (2013)

    Article  CAS  Google Scholar 

  14. A. Jagadesan, G. Peramaiyan, R. Mohan Kumar, S. Arjunan, J. Cryst. Growth 418, 153–157 (2015)

    Article  CAS  Google Scholar 

  15. S. Chandran, R. Paulraj, P. Ramasamy, J. Cryst. Growth 468, 68–72 (2017)

    Article  CAS  Google Scholar 

  16. P. Karuppasamy, T. Kamalesh, K. Anitha, S. Abdul Kalam, M.S. Pandian, P. Ramasamy, S. Verma, S. Venugopal Rao, Opt. Mater. 84, 475–489 (2018)

    Article  CAS  Google Scholar 

  17. G. Bhagavannarayana, R.V. Ananthamurthy, G.C. Budakoti, B. Kumar, K.S. Bartwal, J. Appl. Crystallogr. 38, 768–771 (2005)

    Article  CAS  Google Scholar 

  18. S.K. Kushwaha, N. Vijayan, G. Bhagavannarayana, Mater. Lett. 62, 3931–3933 (2008)

    Article  CAS  Google Scholar 

  19. J. Mohan, Organic Spectroscopy: Principles and Applications (Alpha Science International Ltd, Harrow, UK, 2004)

    Google Scholar 

  20. P. Rekha, G. Peramaiyan, M.N. Mohideen, R.M. Kumar, R. Kanagadurai, Spectrochim. Acta Mol. Biomol. Spectrosc. 139, 302–306 (2015)

    Article  CAS  Google Scholar 

  21. N. Sudharsana, V. Krishnakumar, R. Nagalakshmi, J. Cryst. Growth 398, 45–57 (2014)

    Article  CAS  Google Scholar 

  22. J. Tauc, R. Grigorovici, A. Vancu, Phys. Status Solidi B 15, 627–637 (1996)

    Article  Google Scholar 

  23. S. Ramezan, J. Mater. Sci. Mater. Electron. 31, 12041–12043 (2020)

    Article  CAS  Google Scholar 

  24. S. Ramezan, Chin. J. Phys. 66, 109–111 (2020)

    Article  CAS  Google Scholar 

  25. P. Karuppasamy, M.S. Pandian, P. Ramasamy, J. Cryst Growth 473, 39–54 (2017)

    Article  CAS  Google Scholar 

  26. K. Sangwal, Etching of Crystals: Theory, Experiment and Application (North Holland Physics Publishing, Amsterdam, 1987).

    Google Scholar 

  27. P.A. Alvi, V.S. Meel, K. Sarita, J. Akhtar, K.M. Lal, A. Azam, S.A.H. Naqvi, Int. J. Chem. Sci. 6, 1168–1176 (2008)

    CAS  Google Scholar 

  28. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S.K. Das, Optik 156, 707–719 (2018)

    Article  CAS  Google Scholar 

  29. S. Karan, S.P.S. Gupta, Mater. Sci. Eng. A 398, 198–203 (2005)

    Article  CAS  Google Scholar 

  30. E. Meyer, Z. Ver, Deut. Ing. 52, 645–835 (1908)

    CAS  Google Scholar 

  31. M. Hanneman, Metall. Manch. 23, 135 (1941)

    Google Scholar 

  32. P. Karuppasamy, M.S. Pandian, P. Ramasamy, S. Verma, Opt. Mater. 79, 152–171 (2018)

    Article  CAS  Google Scholar 

  33. J.L. Oudar, J. Chem. Phys. 67, 446–457 (1977)

    Article  CAS  Google Scholar 

  34. T.L. Chen, Z.H. Sun, C. Song, Y. Ge, J.H. Luo, W.X. Lin, M.C. Hong, Cryst. Growth Des. 12, 2673–2678 (2012)

    Article  CAS  Google Scholar 

  35. N. Vijayan, G. Bhagavannarayana, R. Ramesh Babu, R. Gopalakrishnan, K.K. Maurya, P. Ramasamy, Cryst. Growth Des. 6, 1542–1546 (2006)

    Article  CAS  Google Scholar 

  36. S. Sonia, N. Vijayan, M. Vij, P. Kumar, B. Singh, S. Das, R. Rajnikant, H. Soumya, Mater. Chem. Front. 1, 1107–1117 (2017)

    Article  CAS  Google Scholar 

  37. N.L. Boling, M.D. Crisp, G. Dube, Appl. Opt. 12, 650–660 (1973)

    Article  CAS  Google Scholar 

  38. J.D. Hecht, A. Eifler, V. Riede, M. Schubert, G. Krauss, V. Kramer, Phys. Rev. B 57, 7037–7042 (1998)

    Article  CAS  Google Scholar 

  39. S. Kar, S. Verma, K.S. Bartwal, Cryst. Growth Des. 8, 4424–4427 (2008)

    Article  CAS  Google Scholar 

  40. I. Bhaumik, R. Bhatt, S. Ganesamoorthy, A. Saxena, A.K. Karnal, P.K. Gupta, A.K. Sinha, S.K. Deb, Appl. Opt. 31, 6006–6010 (2011)

    Article  Google Scholar 

  41. D. Xue, K. Kitamura, Solid State Commun. 122, 537–541 (2002)

    Article  CAS  Google Scholar 

  42. U. Von Hundelshausen, Phys. Lett. A 34, 405–406 (1971)

    Article  Google Scholar 

  43. S. Suresh, Mater. Phys. Mech. 14, 145–151 (2012)

    CAS  Google Scholar 

  44. J.D. Jackson, Classical Electrodynamics (Wiley, New York, 1978).

    Google Scholar 

  45. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    Article  CAS  Google Scholar 

  46. C. Balarew, R. Duhlew, J. Solid State Chem. 55, 1–6 (1984)

    Article  Google Scholar 

  47. N.M. Ravindra, V.K. Srivastava, J. Infrared Phys. 20, 67–69 (1980)

    Article  CAS  Google Scholar 

  48. M. Born, E. Wolf, Osnovy Optiki, 2nd edn. (Moscow, 1973)

  49. M.J. Renne, B.R.A. Nijboer, Chem. Phys. Lett. 1, 317–320 (1967)

    Article  CAS  Google Scholar 

  50. B.R.A. Nijboer, M.J. Renne, Chem. Phys. Lett. 2, 35–38 (1968)

    Article  CAS  Google Scholar 

  51. B.W. Kwaadgras, M. Verdult, M. Dijkstra, R. van Roij, J. Chem. Phys. 135, 134105 (2011)

    Article  CAS  Google Scholar 

  52. R. Robert, C. Justin Raj, S. Krishnan, S. Jerome Das, Phys. B 405, 20–24 (2010)

    Article  CAS  Google Scholar 

  53. S.K. Kurtz, T.T. Perry, J. Appl. Phys. 39, 3798–3813 (1968)

    Article  CAS  Google Scholar 

  54. M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)

    Article  CAS  Google Scholar 

  55. M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Quant. Electron. 26, 760–769 (1990)

    Article  CAS  Google Scholar 

  56. V. Sivasubramani, A. Raja, P. Karuppasamy, K. Ramachandran, M.S. Pandian, P. Ramasamy, Appl. Phys. 29, 123–780 (2017)

    Google Scholar 

  57. S. Saltiel, S. Tanev, A.D. Boardman, Opt. Lett. 22, 148–150 (1997)

    Article  CAS  Google Scholar 

  58. E.W. Van Stryland, M. Sheik-Bahae, Charact. Tech. Tabul. Org. Nonlinear Mater. 60, 655–692 (1998)

    Google Scholar 

  59. M. Sukumar, R. Ramesh Babu, K. Ramamurthi, Appl. Phys. B 121, 369–373 (2015)

    Article  CAS  Google Scholar 

  60. M.K. Kumar, S. Sudhahar, P. Pandi, G. Bhagavannarayana, R.M. Kumar, Opt. Mater. 36, 988–995 (2014)

    Article  CAS  Google Scholar 

  61. F.Q. Li, N. Zong, F.F. Zhang, J. Yang, F. Yang, Q.J. Peng, D.F. Cui, J.Y. Zhang, X.Y. Wang, C.T. Chen, Z.Y. Xu, Appl. Phys. B 108, 301–305 (2012)

    Article  CAS  Google Scholar 

  62. M. Yin, H.P. Li, S.H. Tang, W. Ji, Appl. Phys. B 70, 587–591 (2000)

    Article  CAS  Google Scholar 

  63. D. Wang, T. Li, S. Wang, J. Wang, Z. Wang, X. Xu, F. Zhang, RSC Adv. 6, 14490–14495 (2016)

    Article  CAS  Google Scholar 

  64. Y.S. Zhou, E.B. Wang, J. Peng, J. Liu, C.W. Hu, R.D. Huang, X. You, Polyhedron 18, 1419–1423 (1999)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the BRNS project (Ref. 34/14/06/2016-BRNS/34032), Government of India. One of the authors, T. Kamalesh, is thankful to SSN Trust, Chennai, for providing the junior research fellowship. The authors are thankful to SSN Trust for establishing laser facilities in SSN Research Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Kamalesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamalesh, T., Karuppasamy, P., Senthil Pandian, M. et al. Synthesis, crystal growth, and physicochemical characterization of 4-aminopyridinium 4-nitrophenolate 4-nitrophenol (4AP4NP) single crystals for NLO applications. J Mater Sci: Mater Electron 32, 6141–6157 (2021). https://doi.org/10.1007/s10854-021-05332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-05332-8

Navigation