Skip to main content
Log in

Porous CoNi2O4 petal-like structures derived from bimetallic Co,Ni-MOF for energy storage aims

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, C-NiCo2O4 petal-like active material is prepared by post-calcination of Ni,Co-based metal–organic-framework (Ni,Co-MOF) electrodeposited onto Ni-foam (NF). The as-prepared Ni,Co-MOF and C-NiCo2O4 electrodes are characterized by various techniques such as X-ray diffraction, thermogravimetric analysis, differential scanning calorimetry, Field emission scanning electron microscope, and Energy dispersive X-ray spectroscopy. The electrochemical performances of the pristine Ni,Co-MOF and C-NiCo2O4 electrodes are evaluated by cyclic voltammetry, galvanostatic charge/discharge (GCD), and electrochemical impedance spectroscopy tests. The CV and GCD results proved that the synthesized C-NiCo2O4/NF electrode represents superior storage capability as compared to pristine Ni,Co-MOF/NF electrode. The specific capacity of C-NiCo2O4/NF was 825 C g−1 at the discharge current of 1 A g−1 and 63.6% capacity retention was observed at the high current density of 20 A g−1. The specific capacity of C-NiCo2O4/NF remained 86.3% of its initial value after 7000 cycling at 5 A g−1. The carbon-coated NiCo2O4 porous petals are promising electrode material for energy storage/conversion devices with excellent performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. D. Gielen, F. Boshell, D. Saygin, M.D. Bazilian, N. Wagner, R. Gorini, Energy Strategy Rev. 24, 38 (2019)

    Google Scholar 

  2. T.M. Gür, Energy Environ. Sci. 11, 2696 (2018)

    Google Scholar 

  3. K.M. Tan, T.S. Babu, V.K. Ramachandaramurthy, P. Kasinathan, S.G. Solanki, S.K. Raveendran, J. Energy Storage 39, 102591 (2021)

    Google Scholar 

  4. A. Alem, K. Theodoros, K. Maitane, J. Van Mierloa, M. Berecibar, Renew. Sustain. Energy Rev. 159, 112213 (2022)

    Google Scholar 

  5. L. Yu, G.Z. Chen, Electrochem. Energy Rev. 3, 278 (2020)

    Google Scholar 

  6. D.B. Malavekar, V.C. Lokhande, V.J. Mane, S.B. Ubale, U.M. Patil, C.D. Lokhande, J. Phys. Chem. Solids 141, 109425 (2020)

    CAS  Google Scholar 

  7. W. Shang, W. Yu, X. Xiao, Y. Ma, Y. He, Z. Zhao, P. Tan, Adv. Powder Mater. 2, 100075 (2023)

    Google Scholar 

  8. A. Bashir, S. Shukla, R. Bashir, R. Patidar, A. Bruno, D. Gupta, M.S. Satti, Z. Akhter, Sol. Energy 196, 367 (2020)

    CAS  Google Scholar 

  9. S. Jha, M. Velhal, W. Stewart, V. Amin, E. Wang, H. Liang, Appl. Mater. Today 26, 101220 (2022)

    Google Scholar 

  10. K. Hedayati, S. Azarakhsh, D. Ghanbari, J. Nanostruct. 6, 127 (2016)

    CAS  Google Scholar 

  11. K. Hedayati, S. Azarakhsh, J. Saffari, D. Ghanbari, J. Mater. Sci.: Mater. Electron. 28, 5472 (2017)

    CAS  Google Scholar 

  12. H. Li, Z. Feng, H. Che, Y. Liu, Z. Guo, X. Zhang, Z. Zhang, Y. Wang, J. Mu, J. Mater. Sci.: Mater. Electron. 31, 17879 (2020)

    Google Scholar 

  13. A. Bekoe-Appiagyei, J. Otabil-Bonsu, J. In-Han, J. Mater. Sci.: Mater. Electron. 32, 6668 (2021)

    Google Scholar 

  14. N. Zhang, C. Xu, H. Wang, J. Zhang, Y. Liu, Y. Fang, J. Mater. Sci.: Mater. Electron. 32, 1787 (2021)

    CAS  Google Scholar 

  15. N.C. Maile, S.K. Shinde, R.T. Patil, A.V. Fulari, R.R. Koli, D.Y. Kim, D.S. Lee, V.J. Fulari, J. Mater. Sci.: Mater. Electron. 30, 3729 (2019)

    CAS  Google Scholar 

  16. R.B. Waghmode, A.P. Torane, J. Mater. Sci.: Mater. Electron. 28, 9575 (2017)

    CAS  Google Scholar 

  17. C. Hao, S. Zhou, J. Wang, X. Wang, H. Gao, C. Ge, Ind. Eng. Chem. Res. 57, 2517 (2018)

    CAS  Google Scholar 

  18. A.K. Yedluri, H.J. Kim, RSC Adv. 9, 1115 (2019)

    CAS  Google Scholar 

  19. G. Xu, P. Nie, H. Dou, B. Ding, L. Li, X. Zhang, Mater. Today 20, 191 (2017)

    CAS  Google Scholar 

  20. M. Lan, X. Wang, R. Zhao, M. Dong, L. Fang, L. Wang, J. Alloys Compds. 821, 153546 (2020)

    CAS  Google Scholar 

  21. M. Aghazadeh, H. Foratirad, J. Energy Storage 53, 105194 (2022)

    Google Scholar 

  22. M. Aghazadeh, H. Foratirad, Synth. Met. 285, 117009 (2022)

    CAS  Google Scholar 

  23. M. Aghazadeh, H. Forati-Rad, K. Yavari, K. Mohammadzadeh, J. Mater. Sci.: Mater. Electron. 32, 13156 (2021)

    CAS  Google Scholar 

  24. M. Aghazadeh, H. Foratirad, J. Mater. Sci.: Mater. Electron. 33, 11038 (2022)

    CAS  Google Scholar 

  25. Y. Liu, Y. He, E. Vargun, T. Plachy, P. Saha, Q. Cheng, Nanomaterials 10, 695 (2020)

    CAS  Google Scholar 

  26. X. Wang, Q. Li, N. Yang, Y. Yang, F. He, J. Chu, M. Gong, B. Wu, R. Zhang, S. Xiong, J. Solid State Chem. 270, 370 (2019)

    CAS  Google Scholar 

  27. X. Chen, H. Li, J. Xu, F. Jaber, F. Musharavati, E. Zalnezhad, S. Bae, K.S. Hui, K.N. Hui, J. Liu, Nanomaterials 10, 1292 (2020)

    CAS  Google Scholar 

  28. M. Zhang, F. Zhao, T. An, Y. Yang, H. Li, Q. Pan, X. Wang, Z. Jiang, J. Phys. Chem. A 124, 1673 (2020)

    CAS  Google Scholar 

  29. M.A. Yewale, R.A. Kadam, N.K. Kaushik, J.R. Koduru, N.B. Velhal, U.T. Nakate, A.A. Jadhavar, N.D. Sali, D.K. Shin, Mater. Sci. Eng. B 287, 116072 (2023)

    CAS  Google Scholar 

  30. D. Kumar Km, J.G. Hong, J. Kweon, G. Saeed, K. Ho Kim, D. Lee, M.C. Kang, Mater. Chem. Phys. 291, 126718 (2022)

    Google Scholar 

  31. C. Qu, B. Zhao, Y. Jiao, D. Chen, S. Dai, B.M. Deglee, Y. Chen, K.S. Walton, R. Zou, M. Liu, ACS Energy Lett. 2, 1263 (2017)

    CAS  Google Scholar 

  32. S. Chen, M. Xue, Y. Li, Y. Pan, L. Zhu, S. Qiu, J. Mater. Chem. A 3, 20145 (2015)

    CAS  Google Scholar 

  33. L.T. Gong, M. Xu, R.P. Ma, Y.P. Han, H.B. Xu, G. Shi, Sci. China Technol. Sci. 63, 1470 (2020)

    CAS  Google Scholar 

  34. M.A. Yewale, R.A. Kadam, N.K. Kaushik, L.N. Nguyen, U.T. Nakate, L.P. Lingamdinne, J.R. Koduru, P.S. Auti, S.V.P. Vattikuti, D.K. Shin, Colloids Surf. A 653, 129901 (2022)

    CAS  Google Scholar 

  35. Z. Zhang, H. Huo, J. Gao, Z. Yu, F. Ran, L. Guo, S. Lou, T. Mu, X. Yin, Q. Wang, G. Yin, J. Alloys Compds. 801, 158 (2019)

    CAS  Google Scholar 

  36. K. Venkatesh, C. Karuppiah, R. Palani, G. Periyasamy, S.K. Ramaraj, C.C. Yang, Mater. Lett. 323, 132609 (2022)

    CAS  Google Scholar 

  37. A. Agrawal, A. Kumar, A. Gaur, J. Energy Storage 56, 105990 (2022)

    Google Scholar 

  38. S. Kishore Babu, M. Jayachandran, T. Maiyalagan, T. Vijayakumar, B. Gunasekaran, Mater. Lett. 302, 130338 (2021)

    CAS  Google Scholar 

  39. Y. Cao, N. Wu, F. Yang, M. Yang, T. Zhang, H. Guo, W. Yang, Colloids Surf. A 646, 128954 (2022)

    CAS  Google Scholar 

  40. G. Guo, J. Mater. Sci.: Mater. Electron. 32, 16287 (2021)

    CAS  Google Scholar 

  41. X. Zhang, J. Wang, X. Ji, Y. Sui, F. Wei, J. Qi, Q. Meng, Y. Ren, Y. He, D. Zhuang, J. Mater. Sci.: Mater. Electron. 31, 16260 (2020)

    CAS  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: MA; Methodology: MA and IK; Formal analysis and investigation: IK, HF; Writing—original draft preparation: HF and MAA; Writing—review and editing: MA; Funding acquisition: HF and IK, Resources: HF and MAA; Supervision: MA.

Corresponding author

Correspondence to Mustafa Aghazadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghazadeh, M., Foratirad, H., Karimzadeh, I. et al. Porous CoNi2O4 petal-like structures derived from bimetallic Co,Ni-MOF for energy storage aims. J Mater Sci: Mater Electron 34, 1465 (2023). https://doi.org/10.1007/s10854-023-10863-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10863-3

Navigation