Skip to main content

Advertisement

Log in

Hierarchical carbon-free NiCo2O4 cathode for Li–O2 batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Li–oxygen battery provides much higher specific energy density compared to conventional Li–ion batteries, but there is a lack of desired cathodes which show lower over-potential during the charging cycle. Here, we report the effect of surface morphology of carbon-free spinel-like NiCo2O4 nanowires and nanosheets on Ni foam on cathode performance in Li–O2 battery. Two hierarchical structured NiCo2O4 cathodes were synthesized by using a hydrothermal method. Physical, chemical, and electrochemical properties of NiCo2O4 were characterized using powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, BET surface area, electrochemical AC impedance spectroscopy, and linear sweep voltammetry. Scale-like NiCo2O4 electrode showed the highest specific capacity, compared to that of rod-like morphology, which seems due to a superior catalytic activity for oxygen reduction reaction, with lower charging over-potential, high discharge capacity, and excellent cycle performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bruce PG, Hardwick LJ, Abraham KM (2011) Lithium-air and lithium-sulfur batteries. MRS Bull 36:506–512

    Article  CAS  Google Scholar 

  2. Liu T, Leskes M, Yu WJ, Moore AJ, Zhou LN, Bayley PM, Kim G, Grey CP (2015) Cycling Li-O2 batteries via LiOH formation and decomposition. Sci 350(6260):530–533

    Article  CAS  Google Scholar 

  3. Lu YC, Gasteiger HA, Crumlin E, Mcguire R, Yang SH (2010) Electrocatalytic activity studies of select metal surfaces and implications in Li-air batteries. J Electrochem Soc 157(9):A1016–A1025

    Article  CAS  Google Scholar 

  4. Ding N, Chien SW, Andy Hor TS, Lum R, Zong Y, Liu ZL (2014) Influence of carbon pore size on the discharge capacity of Li–O2 batteries. J Mater Chem A 2(31):12433–12441

    Article  CAS  Google Scholar 

  5. Débart A, Bao J, Armstrong G, Bruce PG (2007) An O2 cathode for rechargeable lithium batteries: the effect of a catalyst. J Power Sources 174(2):1177–1182

    Article  CAS  Google Scholar 

  6. Nakanishi S, Mizuno F, Nobuhara K, Abe T, Iba H (2012) Influence of the carbon surface on cathode deposits in non-aqueous Li–O2, batteries. Carbon 50(13):4794–4803

    Article  CAS  Google Scholar 

  7. Mccloskey BD, Speidel A, Scheffler R, Miller DC, Viswanathan V, Hummelshøj JS, Nørskov JK, Luntz AC (2012) Twin problems of interfacial carbonate formation in nonaqueous Li–O2 batteries. J Phys Chem Lett 3(8):997–1001

    Article  CAS  PubMed  Google Scholar 

  8. Xu JJ, Wang ZL, Xu D, Zhang LL, Zhang XB (2013) Tailoring deposition and morphology of discharge products towards high-rate and long-life lithium-oxygen batteries. 4: 2438

  9. Guo XX, Zhao N (2013) The role of charge reactions in cyclability of lithium–oxygen batteries. Adv Energy Mater 3:1413–1416

    Article  CAS  Google Scholar 

  10. Wang ZL, Xu D, Xu JJ, Zhang XB (2014) Oxygen electrocatalysts in metal–air batteries: from aqueous to nonaqueous electrolytes. Chem Soc Rev 43:7746–7786

    Article  CAS  PubMed  Google Scholar 

  11. Peng ZQ, Freunberger SA, Chen YH, Bruce PG (2012) A reversible and higher-rate Li-O2 battery. Sci 337:563–566

    Article  CAS  Google Scholar 

  12. Luo WB, Gao XW, Shi DQ, Chou SL, Wang JZ, Liu HK (2016) Binder-free and carbon-free 3D porous air electrode for Li-O2 batteries with high efficiency, high capacity, and long life. Small 12(22):3031–3038

    Article  CAS  PubMed  Google Scholar 

  13. Kim J, Kim Y, Wu M, Yoon DH, Kang YK, Jung HK (2016) In situ synthesis of amorphous titanium dioxide supported RuO2 as a carbon-free cathode for non-aqueous Li–O2 batteries. RSC Adv 6(94):91779–91782

    Article  CAS  Google Scholar 

  14. Xu JJ, Chang ZW, Wang Y, Liu DP, Zhang Y, Zhang XB (2016) Cathode surface-induced, solvation-mediated, micrometer-sized Li2O2 cycling for Li–O2 batteries. Adv Mater 28:9620–9628

    Article  CAS  PubMed  Google Scholar 

  15. Xu JJ, Wang ZL, Xu D, Meng FZ, Zhang XB (2013) 3D ordered macroporous LaFeO3 as efficient electrocatalyst for Li–O2 batteries with enhanced rate capability and cyclic performance. 7: 2213–2219

  16. Liu QC, Xu JJ, Xu D, Zhang XB (2015) Flexible lithium–oxygen battery based on a recoverable cathode. 6: 7892

  17. Huang LL, Mao YJ, Wang GQ, Xia XK, Xie J, Zhang SC, Du GH, Cao GS, Zhao XB (2016) Ru-decorated knitted Co3O4 nanowires as a robust carbon/binder-free catalytic cathode for lithium–oxygen batteries. New J Chem 40(8):6812–6818

    Article  CAS  Google Scholar 

  18. Cao C, Yan YC, Zhang H, Xie J, Zhang SC, Pan B, Cao GS, Zhao XB (2016) Controlled growth of Li2O2 by co-catalysis of mobile Pd and Co3O4 nanowire arrays for high-performance Li–O2 batteries. ACS Appl Mater Interfaces 8(46):31653–31660

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Zou LL, Li J, Guo K, Dong XW, Li XW, Xue XZ, Zhang HF, Yang H (2014) Synthesis of ordered mesoporous NiCo2O4 via hard template and its application as bifunctional electrocatalyst for Li-O2 batteries. Electrochim Acta 129(10):14–20

    Article  CAS  Google Scholar 

  20. Hu J, Li MC, Lv FC, Yang MY, Tao PP, Tang YG, Liu HT, Lu ZG (2015) Heterogeneous NiCo2O4 @polypyrrole core/sheath nanowire arrays on Ni foam for high performance supercapacitors. J Power Sources 294:120–127

    Article  CAS  Google Scholar 

  21. Lee DU, Kim BJ, Chen ZW (2013) One-pot synthesis of a mesoporous NiCo2O4 nanoplatelet and graphene hybrid and its oxygen reduction and evolution activities as an efficient bi-functional electrocatalyst. J Mater Chem A 1(15):4754–4762

    Article  CAS  Google Scholar 

  22. Jin C, Lu FL, Cao XC, Yang ZR, Yang RZ (2013) Facile synthesis and excellent electrochemical properties of NiCo2O4 spinel nanowire arrays as a bifunctional catalyst for the oxygen reduction and evolution reaction. J Mater Chem A 1(39):12170–12177

    Article  CAS  Google Scholar 

  23. Jadhav HS, Kalubarme RS, Roh JW, Jung KN, Shin KH, Park CN, Park CJ (2014) Facile and cost effective synthesized mesoporous spinel NiCo2O4 as catalyst for non-aqueous lithium-oxygen batteries. J Electrochem Soc 161(14):A2188–A2196

    Article  CAS  Google Scholar 

  24. Zhou XY, Chen GH, Tang JJ, Ren YP, Yang J (2015) One-dimensional NiCo2O4, nanowire arrays grown on nickel foam for high-performance lithium-ion batteries. J Power Sources 299:97–103

    Article  CAS  Google Scholar 

  25. Liu WM, Yin WW, Ding F, Sang L, Fu ZW (2014) NiCo2O4 nanosheets supported on Ni foam for rechargeable nonaqueous sodium–air batteries. Electrochem Commun 45:87–90

    Article  CAS  Google Scholar 

  26. Wang T, Guo Y, Zhao B, Yu SH, Yang HP, Lu D, Fu XZ, Sun R, Wong CP (2015) NiCo2O4 nanosheets in-situ grown on three dimensional porous Ni film current collectors as integrated electrodes for high-performance supercapacitors. J Power Sources 286:371–379

    Article  CAS  Google Scholar 

  27. Ma TY, Dai S, Qiao SZ (2016) Self-supported electrocatalysts for advanced energy conversion processes. Mater Today 19:265–273

    Article  CAS  Google Scholar 

  28. Shen LF, Che Q, Li HS, Zhang XG (2014) Mesoporous NiCo2O4 nanowire arrays grown on carbon textiles as binder-free flexible electrodes for energy storage. Adv Funct Mater 24:2630–2637

    Article  CAS  Google Scholar 

  29. Lin XJ, Su JM, Li LY, Yu AS (2015) Hierarchical porous NiCo2O4@Ni as carbon-free electrodes for lithium–oxygen batteries. Electrochim Acta 168:292–299

    Article  CAS  Google Scholar 

  30. Lu XF, Wu DJ, Li RZ, Li Q, Ye SH, Tong YX, Li GR (2014) Hierarchical NiCo2O4 nanosheets@hollow microrod arrays for high-performance asymmetric supercapacitors. J Mater Chem A 2(13):4706–4713

    Article  CAS  Google Scholar 

  31. Rashkova V, Kitova S, Vitanov T (2010) Influence of the nickel content on the electrocatalytic activity of thin nanostructured Co–Te–Ni–O films. J Solid State Electrochem 14:1073–1078

    Article  CAS  Google Scholar 

  32. Lin H, Liu ZX, Mao Y, Liu XJ, Fang YQ, Liu Y, Wang DY, Xie JY (2016) Effect of nitrogen-doped carbon/Ketjenblack composite on the morphology of Li2O2 for high-energy-density Li–air batteries. Carbon 96:965–971

    Article  CAS  Google Scholar 

Download references

Funding

This study received financial support from the Major Program of Shandong Province, China (No. 2015ZDZX04002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongming Zhu or Venkataraman Thangadurai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, J., Liu, Z., Wen, Y. et al. Hierarchical carbon-free NiCo2O4 cathode for Li–O2 batteries. Ionics 25, 1669–1677 (2019). https://doi.org/10.1007/s11581-018-2656-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2656-6

Keywords

Navigation