Skip to main content
Log in

Enhancement of lithium ions storage capacity of manganese ferrites through hybridization with multi-walled carbon nanotubes

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The high electric conductivity, quick ion transport, and a large surface area are the prominent characteristics of the electrode materials for high-performance lithium-ion batteries. The synthesis of manganese ferrite (MnFe2O4) nanoparticles and multi-walled carbon nanotubes (MWCNTs) nanohybrids was carried out in two-step synthesis method. In the first step, the chemical co-precipitation route was used to prepare MnFe2O4 nanoparticles, and than an ultra-sonication-assisted approach was applied for the assembly of MnFe2O4/(MWCNTs)x nanohybrids. The dispersion of MnFe2O4 nanoparticles and MWCNTs was carried out in a toluene medium. The prominent FCC crystal structure of these nanohybrids was determined by the X-ray diffraction (XRD) and the settlement of MnFe2O4 nanoparticles on the surface of MWCNTs was observed by using scanning electron microscope (SEM). The elemental composition analysis of MnFe2O4/(MWCNTs)x nanohybrids was carried out by energy-dispersive X-ray (EDS) spectroscopy. The embedment of MnFe2O4 nanoparticles on the surface of MWCNTs formed a network in which MWCNTs offered efficient electron transport pathways in MnFe2O4/(MWCNTs)x nanohybrids for accomplishment of high-performance lithium-ion batteries. The electrochemical investigations of these nanohybrids showed a high specific capacity of 1342 mAh/g and excellent reversible capacity of 775 mAh/g at 100 mA/g. Moreover, a high specific capacity of 1342 mAh/g after 30 cycles at 100 mA/g returned to initial capacity for optimum x = 20 wt% contents of MWCNT in these nanohybrids. This is an easy, low-cost, and very effective method to produce high-performance anode materials for lithium-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

Not Applicable.

Code availability

Not Applicable.

References

  1. Z. Yang, J. Zhang, M.C.W.K. Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Electrochemical energy storage for green grid. Chem. Rev. 111(5), 3577–3613 (2011)

    CAS  Google Scholar 

  2. Y. Chen, X. Ke, Y. Cheng, M. Fan, W. Wu, X. Huang, Y. Liang, Y. Zhong, Z. Ao, Y. Lai, G. Wang, Z. Shi, Boosting the electrochemical performance of 3D composite lithium metal anodes through synergistic structure and interface engineering. Energy Storage Mater. 26, 56–64 (2020)

    CAS  Google Scholar 

  3. X. Ke, Y. Liang, L. Ou, H. Liu, Y. Chen, W. Wu, Y. Cheng, Z. Guo, Y. Lai, P. Liu, Z. Shi, Surface engineering of commercial Ni foams for stable Li metal anodes. Energy Storage Mater. 23, 547–555 (2019)

    Google Scholar 

  4. V. Etacheri, R. Marom, R. Elazari, G. Salitra, D. Aurbach, Challenges in the development of advanced Li-ion batteries: a review. Energy Environ. Sci. 4, 3243–3262 (2011)

    CAS  Google Scholar 

  5. G. Liu, N. Wang, F. Qi, X. Lu, Y. Liang, Z. Sun, Novel Ni–Ge–P anodes for lithium-ion batteries with enhanced reversibility and reduced redox potential. Inorg. Chem. Front. 10, 669–711 (2023)

    Google Scholar 

  6. G. Liu, Y. Yang, X. Lu, F. Qi, Y. Liang, A. Trukhanov, Y. Wu, Z. Sun, X. Lu, Fully active bimetallic phosphide Zn0.5Ge0.5P: a novel high-performance anode for Na-ion batteries coupled with diglyme-based electrolyte. ACS Appl. Mater. Interfaces 14, 31803–31813 (2022)

    CAS  Google Scholar 

  7. A. Barai, K. Uddin, W.D. Widanalage, A. McGordon, P. Jennings, The effect of average cycling current on total energy of lithium-ion batteries for electric vehicles. J. Power Sources 303, 81–85 (2016)

    CAS  Google Scholar 

  8. S.Z. Ajabshir, M.S. Morassaei, M.S. Niasari, Simple approach for the synthesis of Dy2Sn2O7 nanostructures as a hydrogen storage material from banana juice. J. Clean. Prod. 222, 103–110 (2019)

    Google Scholar 

  9. S.Z. Ajabshir, Z. Salehi, M.S. Niasari, Synthesis of dysprosium cerate nanostructures using Phoenix dactylifera extract as novel green fuel and investigation of their electrochemical hydrogen storage and Coulombic efficiency. J. Clean. Prod. 215, 480–487 (2019)

    Google Scholar 

  10. J. Lu, Z. Chen, F. Pan, Y. Cui, K. Amine, High performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 1(1), 35–53 (2018)

    CAS  Google Scholar 

  11. J. Li, S. Hwang, F. Guo, S. Li, Z. Chen, R. Kou, K. Sun, C.J. Sun, H. Gan, A. Yu, E.A. Stach, H. Zhou, D. Su, Phase evolution of conversion-type electrode for lithium ion batteries. Nat. Commun. 10(1), 1–10 (2019)

    Google Scholar 

  12. S.Z. Ajabshir, Z. Salehi, O. Amiri, M.S. Niasari, Simple fabrication of Pr2Ce2O7 nanostructures via a new and ecofriendly route; a potential electrochemical hydrogen storage material. J. Alloys Compds 791, 792–799 (2019)

    Google Scholar 

  13. J. Cabana, L. Monconduit, D. Larcher, M.R. Palacin, Beyond intercalation-based Li-ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 22, 170–192 (2010)

    Google Scholar 

  14. S.Z. Ajabshir, Z. Salehi, O. Amiri, M.S. Niasari, Green synthesis, characterization and investigation of the electrochemical hydrogen storage properties of Dy2Ce2O7 nanostructures with fig extract. Int. J. Hydrog. Energy 44, 20110–20120 (2019)

    Google Scholar 

  15. S.Z. Ajabshir, M.S. Morassaeib, O. Amiri, M.S. Niasari, L.K. Foong, Nd2Sn2O7 nanostructures: green synthesis and characterization using date palm extract, a potential electrochemical hydrogen storage material. Ceram. Int. 46, 17186–17196 (2020)

    Google Scholar 

  16. Y. Sun, N. Liu, Y. Cui, Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 1–12 (2016)

    Google Scholar 

  17. Y. Ren, A.R. Armstrong, F. Jiao, P.G. Bruce, Influence of size on the rate of mesoporous electrodes for lithium batteries. J. Am. Chem. Soc. 132(3), 996–1004 (2010)

    CAS  Google Scholar 

  18. M.H. Esfahani, S.Z. Ajabshir, H. Naji, C.A. Marjerrison, J.E. Greedan, M. Behzad, Structural characterization, phase analysis and electrochemical hydrogen storage studies on new pyrochlore SmRETi2O7 (RE = Dy, Ho, and Yb) microstructures. Ceram. Int. 49, 253–263 (2023)

    CAS  Google Scholar 

  19. S.Z. Ajabshir, E. Shafaati, A. Bahrami, Facile fabrication of efficient Pr2Ce2O7 ceramic nanostructure for enhanced photocatalytic performances under solar light. Ceram. Int. 48, 24695–24705 (2022)

    Google Scholar 

  20. L. Zhou, H. Xu, H. Zhang, J. Yang, S.B. Hartono, K. Qian, C. Yu, Cheap and scalable synthesis of α-Fe2O3 multi-shelled hollow spheres as high performance anode materials for lithium ion batteries. Chem. Commun. 49(77), 8695–8697 (2013)

    CAS  Google Scholar 

  21. Y. Liang, Y. Chen, X. Ke, Z. Zhang, W. Wu, G. Lin, Z. Zhou, Z. Shi, Coupling of triporosity and strong Au–Li interaction to enable dendrite-free lithium plating/stripping for long-life lithium metal anodes. J. Mater. Chem. A 8, 18094–18105 (2020)

    CAS  Google Scholar 

  22. P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172(1), 379–387 (2007)

    CAS  Google Scholar 

  23. M. Rezayeenik, M.M. Kamazani, S.Z. Ajabshir, CeVO4/rGO nanocomposite: facile hydrothermal synthesis, characterization, and electrochemical hydrogen storage. Appl. Phys. A 47, 129 (2023)

    Google Scholar 

  24. K. Zipare, J. Dhumal, S. Bandgar, V. Mathe, G. Shahane, Superparamagnetic manganese ferrite nanoparticles: synthesis and magnetic properties. J. Nanosci. Nanoeng. 1(3), 178–182 (2015)

    Google Scholar 

  25. Z. Zhang, Y. Wang, Q. Tan, Z. Zhong, F. Su, Facile solvothermal synthesis of mesoporous manganese ferrite (MnFe2O4) microspheres as anode materials for lithium-ion batteries. J. Colloid Interface Sci. 398, 185–192 (2013)

    CAS  Google Scholar 

  26. H. Kim, J.W. Lee, D. Byun, W. Choi, Coaxial-nanostructured MnFe2O4 nanoparticles on polydopamine coated MWCNT for anode materials in rechargeable batteries. Nanoscale 10, 18949–18960 (2018)

    CAS  Google Scholar 

  27. P. Ren, Z. Wang, B. Liu, Y. Lu, Z. Jin, L. Zhang, L. Li, X. Li, C. Wang, Highly dispersible hollow nanospheres organized by ultra-small ZnFe2O4 subunits with enhanced lithium storage properties. J. Alloys Compds 812, 152014 (2020)

    CAS  Google Scholar 

  28. Y. Huang, Z. Dong, D. Jia, Z. Guo, W. Cho, Electrochemical properties of α-Fe2O3/MWCNTs as anode materials for lithium-ion batteries. Solid State Ion. 201, 54–59 (2011)

    CAS  Google Scholar 

  29. L.L. Li, B. Jin, S. Dou, Q. Jiang, Facile fabrication of ZnFe2O4–MWCNTs composite as an anode material for rechargeable lithium-ion batteries. ChemistrySelect 2, 7194–7201 (2017)

    CAS  Google Scholar 

  30. X.H. Ma, Y.Y. Wei, W. Ding, J.F. Zhou, Z.F. Zi, J.M. Dai, Synthesis of MnO@ multi-walled CNTs composite film electrodes for lithium-ion batteries by an improved electrostatic spray deposition method. J. Alloys Compds 717, 69–77 (2017)

    CAS  Google Scholar 

  31. I.T. Kim, A. Magasinski, K. Jacob, G. Yushin, R. Tannenbaum, Synthesis and electrochemical performance of reduced graphene oxide/maghemite composite anode for lithium ion batteries. Carbon 52, 56–64 (2013)

    Google Scholar 

  32. D. Feng, H. Yang, X. Guo, 3-Dimensional hierarchically porous ZnFe2O4/C composites with stable performance as anode materials for Li-ion batteries. Chem. Eng. J. 355, 687–696 (2019)

    CAS  Google Scholar 

  33. H. Fu, Z. Du, W. Zou, H. Li, C. Zhang, Simple fabrication of strongly coupled cobalt ferrite/carbon nanotube composite based on deoxygenation for improving lithium storage. Carbon 65, 112–123 (2013)

    CAS  Google Scholar 

  34. D.H. Lee, S.D. Seo, G.H. Lee, H.S. Hong, D.W. Kim, One-pot synthesis of Fe3O4/Fe/MWCNT nanocomposites via electrical wire pulse for Li ion battery electrodes. J. Alloys Compds 606, 204–207 (2014)

    CAS  Google Scholar 

  35. M. Mujahid, R.U. Khan, M. Mumtaz, Mubasher, S.A. Soomro, S. Ullah, NiFe2O4 nanoparticles/MWCNTs nanohybrid as anode material for lithium-ion battery, Ceram. Int. 45, 8486–8493 (2019)

  36. Y. Fu, Q. Wei, B. Lu, X. Wang, S. Sun, Stem-like nano-heterostructural MWCNTs/α-Fe2O3@TiO2 composite with high lithium storage capability. J. Alloys Compds 684, 419–427 (2016)

    CAS  Google Scholar 

  37. Mubasher, M. Mumtaz, M. Hassan, S. Ullah, Z. Ahmad, Nanohybrids of multi-walled carbon nanotubes and cobalt ferrite nanoparticles: high performance anode material for lithium-ion batteries, Carbon 171, 179–187 (2021)

  38. Mubasher, M. Mumtaz, N.R. Lashari, M. Hassan, S. Tangsee, M.T. Khan, Multi-walled carbon nanotubes and chromium ferrites nanoparticles nanohybrids as anode materials for lithium-ion batteries, J. Alloys Compds 872, 159654 (2021)

  39. Mubasher, M. Mumtaz, B. Ali, S.M. Abbas, K.W. Nam, M.T. Khan, M. Ali, B. Hussain, M.M. Khan, G. Mehmood, Nanohybrids of hematite nanoparticles and reduced graphene oxide nanosheets: anode materials for lithium ion batteries, J. Alloys Compds 907, 164392 (2022)

  40. A. Zonarsaghar, M.M. Kamazani, S.Z. Ajabshir, Co-precipitation synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. J. Mater. Sci. Mater. Electron. 33, 6549–6554 (2022)

    CAS  Google Scholar 

  41. A. Zonarsaghar, M.M. Kamazani, S.Z. Ajabshir, Sonochemical synthesis of CeVO4 nanoparticles for electrochemical hydrogen storage. Int. J. Hydrog. Energy 47, 5403–5417 (2022)

    CAS  Google Scholar 

  42. S.Z. Ajabshir, M.S. Morassaei, M.S. Niasarib, Eco-friendly synthesis of Nd2Sn2O7-based nanostructure materials using grape juice as green fuel as photocatalyst for the degradation of erythrosine. Composites B 167, 643–653 (2019)

    Google Scholar 

  43. Y. Gogotsi, What nano can do for energy storage. ACS Nano 8, 5369–5371 (2014)

    CAS  Google Scholar 

  44. X. Zhu, W. Wu, Z. Liu, L. Li, J. Hu, H. Dai, L. Ding, K. Zhou, C. Wang, X. Song, A reduced graphene oxide–nanoporous magnetic oxide iron hybrid as an improved anode material for lithium ion batteries. Electrochim. Acta 95, 24–28 (2013)

    CAS  Google Scholar 

  45. M. Stoia, C. Păcurariu, C. Mihali, I. Mălăescu, C.N. Marin, A. Căpraru, Manganese ferrite–polyaniline hybrid materials: electrical and magnetic properties. Ceram. Int. 45, 2725–2735 (2019)

    CAS  Google Scholar 

  46. H. Farooq, M.R. Ahmad, Y. Jamil, A. Hafeez, Z. Mahmood, T. Mahmood, Structural and dielectric properties of manganese ferrite nanoparticles. J. Basic Appl. Sci. 8, 597–601 (2012)

    CAS  Google Scholar 

  47. Mubasher, M. Mumtaz, M. Hassan, L. Ali, Z. Ahmad, M.A. Imtiaz, M.F. Aamir, A. Rehman, K. Nadeem, Comparative study of frequency-dependent dielectric properties of ferrites MFe2O4 (M = Co, Mg, Cr and Mn) nanoparticles, Appl. Phys. A 126, 334 (2020)

  48. M.G. Naseri, E.B. Saion, H.A. Ahangar, M. Hashim, A.H. Shaari, Synthesis and characterization of manganese ferrite nanoparticles by thermal treatment method. J. Magn. Magn. Mater. 323, 1745–1749 (2011)

    Google Scholar 

  49. S. Jovanović, T.D. Ross, A. Ostric, D. Tošić, J. Prekodravac, Z. Marković, B. Todorović Marković, Raman spectroscopy of graphene nanoribbons synthesized by longitudinal unzipping of multiwall carbon nanotubes. Phys. Scr. 2014, 014023 (2014)

    Google Scholar 

Download references

Acknowledgements

They also declared that the paper is original and/or is not being considered for publication elsewhere.

Funding

The authors also declared that No funding of any organization is assisted for this work.

Author information

Authors and Affiliations

Authors

Contributions

M: Conceptualization, Methodology, Data curation, Formal analysis, Writing—Original draft preparation. MM: Supervision, Resources, Reviewing, and Editing. SU: Software, Data curation. They also declared that all authors have seen, acknowledged, and approved the manuscript.

Corresponding author

Correspondence to Muhammad Mumtaz.

Ethics declarations

Conflict of interest

They also declared that authors have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not Applicable

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mubasher, Mumtaz, M. & Marwat, S.U. Enhancement of lithium ions storage capacity of manganese ferrites through hybridization with multi-walled carbon nanotubes. J Mater Sci: Mater Electron 34, 1479 (2023). https://doi.org/10.1007/s10854-023-10853-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10853-5

Navigation