Skip to main content

Advertisement

Log in

High value-added development of waste cellulose peels for bio-piezoelectric membrane in nanogenerator-derived self-powered sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Developing high value-added utilization of abundant waste peels could alleviate increasingly environmental concerns and promote economic returns to the industry. In this report, a common waste tomato peel was selected and developed as the bio-piezoelectric membrane for nanogenerator derived self-powered sensor in multifunctional applications. The membrane with a thickness of about 40 μm is composed of nano-layers stacked together, resulting in a laminated structure. The nano-layer is assembled by the interstitial parallel combination of the nanocrystalline microfibrils of cellulsoe Iβ embedded in the amorphous matrix containing hemicellulose and lignin. The ordered cellulose Iβ chain network linked by hydrogen bond in the nanocrystalline microfibrils with a crystal grain size of 1.093 nm is responsible for the piezoelectric effect of the membrane. As a result, a favorable linear relation with an R2 of 0.984 between voltage and force and a sensitivity of 16.17 mV N−1 are given for the membrane based device. Owing to the multiple characteristics of the device, such as nontoxicity, self-powered capability, flexibility and multifunctionality, its potential is exhibited in three types of application scenarios, including human–computer interaction, harvesting wind and mechanical energy, and responding dangerous signal in alarming system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data will be available from the authors upon reasonable request.

References

  1. M.K. Awasthi, S. Sarsaiya, A. Patel, A. Juneja, R.P. Singh, B. Yan, S..K.. Awasthi, A. Jain, T. Liu, Y. Duan, A. Pandey, Z. Zhang, M.J. Taherzadeh, Refining biomass residues for sustainable energy and bio-products: an assessment of technology, its importance, and strategic applications in circular bio-economy. Renew. Sustain. Energy Rev. 127, 109876 (2020)

    Article  Google Scholar 

  2. X. Cao, Y. Xiong, J. Sun, X. Zhu, Q. Sun, Z.L. Wang, Piezoelectric nanogenerators derived self-powered sensors for multifunctional applications and artificial Intelligence. Adv. Funct. Mater. 31(33), 2102983 (2021)

    Article  CAS  Google Scholar 

  3. Z. Han, P. Jiao, Z. Zhu, Combination of piezoelectric and triboelectric devices for robotic self-powered sensors. Micromachines 12(7), 813 (2021)

    Article  Google Scholar 

  4. J.L. Birman, Theory of the piezoelectric effect in the zincblende structure. Phys. Rev. 111(6), 1510 (1958)

    Article  CAS  Google Scholar 

  5. S.K. Ghosh, D. Mandal, Effificient natural piezoelectric nanogenerator: Electricity generation from fish swim bladder. Nano Energy 28, 356–365 (2016)

    Article  CAS  Google Scholar 

  6. J. Sun, H. Guo, J. Ribera, W. Changsheng, T. Kunkun, M. Binelli, G. Panzarasa, F.W.M.R. Schwarze, Z.L. Wang, Ingo Burgert, Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano 14(11), 14665–14674 (2020)

    Article  CAS  Google Scholar 

  7. S. Maiti, S.K. Karan, J. Lee, A.K. Mishra, B.B. Khatua, J.K. Kim, Bio-waste onion skin as an innovative nature-driven piezoelectric material with high energy conversion efficiency. Nano Energy 42, 282–293 (2017)

    Article  CAS  Google Scholar 

  8. S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, B.B. Khatua, A new insight towards eggshell membrane as high energy conversion effificient bio-piezoelectric energy harvester. Mater. Today Energy 9, 114–125 (2018)

    Article  Google Scholar 

  9. S.K. Ghosh, D. Mandal, Bio-assembled, piezoelectric prawn shell made self-powered wearable sensor for non-invasive physiological signal monitoring. Appl. Phys. Lett. 110, 123701 (2017)

    Article  Google Scholar 

  10. S.K. Ghosh, D. Mandal, High-performance bio-piezoelectric nanogenerator made with fish scale. Appl. Phys. Lett. 109, 103701 (2016)

    Article  Google Scholar 

  11. J. Kim, N. Wang, Yi. Chen, S.-K. Lee, G.-Y. Yun, Electroactive-paper actuator made with cellulose/NaOH/urea and sodium alginate. Cellulose 14, 217–223 (2017)

    Article  Google Scholar 

  12. J. Kim, S. Yun, Discovery of cellulose as a smart material. Macromolecules 39, 4202–4206 (2006)

    Article  CAS  Google Scholar 

  13. D. Sarkar, M. Namrata Das, Md. Saikh, P. Biswas, S. Das, S. Das, N.A. Hoque, R. Basu, Development of a sustainable and biodegradable Sonchus asper cotton Pappus based piezoelectric nanogenerator for instrument vibration and human body motion sensing with mechanical energy harvesting applications. ACS Omega 6(43), 28710–28717 (2021)

    Article  CAS  Google Scholar 

  14. C. Fritsch, A.S.A. Happel, M.A.C. Márquez, I. Aguiló-Aguayo, M. Abadias, M. Gallur, I.M. Cigognini, D. Angela Montanari, M.J. López, F. Suárez-Estrella, N. Brunton, E. Luengo, L. Sisti, M. Ferri, G. Belotti, Processing, valorization and application of bio-waste derived compounds from potato, tomato, olive and cereals: A review. Sustainability 9, 1492 (2017)

    Article  Google Scholar 

  15. F. Jiang, Y.-L. Hsieh, Cellulose nanocrystal isolation from tomato peels and assembled nanofifibers. Carbohyd. Polym. 122, 60–68 (2015)

    Article  CAS  Google Scholar 

  16. A.R. Celma, F. Cuadros, F. Lopez-Rodriguez, Characterization of pellets from industrial tomato residues. Food Bioprod. Process. 90(C4), 700–706 (2012)

    Article  CAS  Google Scholar 

  17. P.G. Herrera, M.C. Sanchez-Mata, M. Camara, Nutritional characterization of tomato fiber as a useful ingredient for food industry. Innov. Food Sci. Emerg. Technol. 11(4), 707–711 (2010)

    Article  Google Scholar 

  18. M. Del Valle, M. Camara, M.E. Torija, Chemical characterization of tomato pomace. J. Sci. Food Agric. 86(8), 1232–1236 (2006)

    Article  Google Scholar 

  19. V.A. Bazhenov, Piezoelectric properties of woods (Consultants Bureau, New York, 1961)

    Google Scholar 

  20. S.H. Kim, C.M. Lee, K. Kafle, Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 30(12), 2127–2141 (2013)

    Article  CAS  Google Scholar 

  21. Y. Song, Z. Shi, G.H. Hu et al., Recent advances in cellulose-based piezoelectric and triboelectric nanogenerators for energy harvesting: a review. J. Mater. Chem. A 9(4), 1910–1937 (2021)

    Article  CAS  Google Scholar 

  22. M. Zhang, H. Du, K. Liu et al., Fabrication and applications of cellulose-based nanogenerators. Adv. Compos. Hybrid Mater. 4(4), 865–884 (2021)

    Article  CAS  Google Scholar 

  23. E. Espinosa, J. Domínguez-Robles, R. Sánchez, Q. Tarrés, A. Rodríguez, The effect of pre-treatment on the production of lignocellulosic nanofifibers and their application as a reinforcing agent in paper. Cellulose 24, 2605–2618 (2017)

    Article  CAS  Google Scholar 

  24. P. Adapa, C. Karunakaran, L. Tabil, G. Schoenau, Potential applications of infrared and Raman spectromicroscopy for agricultural biomass. Agric. Eng. Int.: CIGR J. 8, 1081 (2009)

    Google Scholar 

  25. D.S. Himmelsbach, D.E. Akin, Near-Infrared–Fourier-Transform–Raman spectroscopy of flax (Linum usitatissimum L.) stems. J. Agric. Food Chem. 46, 991–998 (1998)

    Article  CAS  Google Scholar 

  26. Y. Xue, X. Qiu, Wu. Ying, Y. Qian, M. Zhou, Y. Deng, Y. Li, Aggregation-induced emission: the origin of lignin fluorescence. Polym. Chem. 7(21), 3502–3508 (2016)

    Article  CAS  Google Scholar 

  27. A.L. Barnette, L.C. Bradley, B.D. Veres, E.P. Schreiner, Y.B. Park, J. Park, S. Park, S.H. Kim, Selective detection of crystalline cellulose in plant cell walls with sum-frequency-generation (SFG) vibration spectroscopy. Biomacromol 12(7), 2434–2439 (2011)

    Article  CAS  Google Scholar 

  28. J. Sugiyama, J. Persson, H. Chanzy, Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24(9), 2461–2466 (1991)

    Article  CAS  Google Scholar 

  29. D. Montesano, F. Fallarino, L. Cossignani, A. Bosi, M.S. Simonetti, P. Puccetti, P. Damiani, Innovative extraction procedure for obtaining high pure lycopene from tomato. Euro. Food Res. Technol. 226(3), 327–335 (2008)

    Article  CAS  Google Scholar 

  30. F. Bettaieb, R. Khiari, A. Dufresne, M.F. Mhenni, M.N. Belgacem, Mechanical and thermal properties of Posidonia ocenica cellulose nanocrystal reinforced polymer. Carbohyd. Polym. 123, 99–104 (2015)

    Article  CAS  Google Scholar 

  31. J. Sugiyama, R. Vuong, H. Chanzy, Electron diffraction study on the two crystalline phases occurring in native cellulose from an algal cell wall. Macromolecules 24, 4168–4175 (1991)

    Article  CAS  Google Scholar 

  32. L. Segal, J.J. Creely, A.E. Martin, C.M. Conrad, An empirical method for estimating the degree of crystallinity of native cellulose using X-ray diffractometer. Text. Res. J. 29(10), 786–794 (1959)

    Article  CAS  Google Scholar 

  33. Md. MehebubAlam, D. Mandal, Native cellulose microfifiber-based hybrid piezoelectric generator for mechanical energy harvesting utility. ACS Appl. Mater. Interfaces 8(3), 1555–1558 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Educational Commission of Jiangxi (KJLD13100; GJJ212301; GJJ212309), Natural Science Foundation of Jiangxi Province (20224BAB214023) and Research Project of Huzhou college (RK65007).

Funding

Foundation of Jiangxi Educational Commission, KJLD13100, Shunjian Xu, GJJ212301, Zonghu Xiao, GJJ212309, Ping Huang, Natural Science Foundation of Jiangxi Province, 20224BAB214023, Ping Huang, Research Project of Huzhou college, RK65007, Shunjian Xu

Author information

Authors and Affiliations

Authors

Contributions

SX: Methodology, Formal analysis, Writing—original draft. PH: Conceptualization, Writing—review & editing. YL: Supervision. YZ: Formal analysis. YW: Investigation. XL: Investigation. ZX: Resources. JF: Validation. ML: Validation.

Corresponding author

Correspondence to Ping Huang.

Ethics declarations

Competing interest

The authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 110 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Huang, P., Luo, Y. et al. High value-added development of waste cellulose peels for bio-piezoelectric membrane in nanogenerator-derived self-powered sensor. J Mater Sci: Mater Electron 34, 1414 (2023). https://doi.org/10.1007/s10854-023-10844-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10844-6

Navigation