Skip to main content
Log in

Synthesis and microwave absorption properties of NiCo2O4 nanoflakes/SiC fibers composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The NiCo2O4 nanoflakes/SiC fibers composites were prepared by electrospinning, carbon thermal reduction combined with hydrothermal method. The results of SEM, XRD and XPS suggested that the NiCo2O4 nanoflakes/SiC fibers composites were successfully prepared. The NiCo2O4 nanoflakes were generated on the surface of SiC fibers with uniform distribution and loose structure. The NiCo2O4 nanoflakes/SiC fibers composites possess the porous structure and their BET specific surface area is 233.2 m2/g. The BJH average pore size and the pore volume are 7.0 nm and 0.4 cm3/g, respectively. The structure of fibers and pores can bring the multiple reflections and scatterings, interface polarizations, dipole polarizations and conductivity losses. In addition, there is the synergistic effect of dielectric loss and the magnetic loss in NiCo2O4 nanoflakes/SiC fibers composites. Therefore, the reflection loss of NiCo2O4 nanoflakes/SiC fibers composites could achieve − 56 dB under the thickness of 6 mm at 17.64 GHz, which showed the better microwave absorption behavior than SiC fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

References

  1. L. Wei, J. Chen, Y. Ding, F.W.J. Zhou, Adaptive tracking of high-maneuvering targets based on multi-feature fusion trajectory clustering: LPI’s purpose. Sensors (Basel) (2022). https://doi.org/10.3390/s22134713

    Article  Google Scholar 

  2. H. Liu, Y. Li, M. Yuan, G. Sun, Q.L.Y. Zhang, Solid and macroporous Fe3C/N-C nanofibers with enhanced electromagnetic wave absorbability. Sci. Rep. 8, 16832 (2018). https://doi.org/10.1038/s41598-018-35078-z

    Article  CAS  Google Scholar 

  3. M.G.X. Chen, Recent progress of nanomaterials for microwave absorption. J. Mater. 5, 503–541 (2019). https://doi.org/10.1016/j.jmat.2019.07.003

    Article  Google Scholar 

  4. J. Zhou, S. Zhou, Q. Zhang, G. Shen, D.X.J. Huang, Structure and properties of microwave absorption Ag/Fe3O4 nanoparticles. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 42, 392–397 (2012). https://doi.org/10.1080/15533174.2011.611209

    Article  CAS  Google Scholar 

  5. M. Izawa, T. Koseki, Y. KamiyaT, Toyomasu, Characteristics of a SiC microwave absorber for a damped cavity. Rev. Sci. Instrum. 66, 1910–1912 (1995). https://doi.org/10.1063/1.1145821

    Article  CAS  Google Scholar 

  6. B. Zhu, Y. Cui, D. Lv, P. Liu, H.W.J. Bu, Synthesis and electromagnetic wave absorption properties of peanut shell-like SiC fibers. Mater. Lett. 263, 1 (2020). https://doi.org/10.1016/j.matlet.2019.127288

    Article  CAS  Google Scholar 

  7. Y. Wang, Y. Li, H. Luo, Z. Li, Z. Li, Improved microwave absorption properties of polycarbosilane-derived SiC core–shell particles by oxidation. J. Alloys Compd. 786, 409–417 (2019). https://doi.org/10.1016/j.jallcom.2019.01.337

    Article  CAS  Google Scholar 

  8. K. Yan, F. Yin, C. Pang, X. Zuo, Q. Zhang, L. Shen, R.F.N. Bao, Broadband microwave absorber constructed by reduced graphene oxide/La0.7Sr0.3MnO3 composites. RSC Adv. 9, 41817–41823 (2019). https://doi.org/10.1039/c9ra09474a

    Article  CAS  Google Scholar 

  9. L. Huang, X. Liu, D. Chuai, Y. Chen, R. Yu, FeSiAl alloy-carbon nanotube composite with tunable electromagnetic properties for microwave absorption. Sci. Rep. 6, 35377 (2016). https://doi.org/10.1038/srep35377

    Article  CAS  Google Scholar 

  10. B.L.W.J.B. Su, X.Y. Cao, R. Yang, H. Zhao, P.K. Zhang, W.K. Wang, C.B. Wang, Simultaneously enhancing mechanical and microwave absorption properties of Cf/SiC composites via SiC nanowires additions. Ceram. Int. 48, 36238–36248 (2022). https://doi.org/10.1016/j.ceramint.2022.08.181

    Article  CAS  Google Scholar 

  11. S. Xie, G.-Q. Jin, S. Meng, Y.-W. Wang, Y.Q.X.-Y. Guo, Microwave absorption properties of in situ grown CNTs/SiC composites. J. Alloys Compd. 520, 295–300 (2012). https://doi.org/10.1016/j.jallcom.2012.01.050

    Article  CAS  Google Scholar 

  12. S. Singh, A.K.D. Singh, Enhanced microwave absorption performance of SWCNT/SiC composites. J. Electron. Mater. 49, 7279–7291 (2020). https://doi.org/10.1007/s11664-020-08460-9

    Article  CAS  Google Scholar 

  13. S. Singh, A.K. Maurya, R. Gupta, A. Kumar, D. Singh, Improved microwave absorption behavioral response of Ni/SiC and Ni/SiC/graphene composites: a comparative insight. J. Alloys Compd. (2020). https://doi.org/10.1016/j.jallcom.2020.153780

    Article  Google Scholar 

  14. B. Kuang, Y. Dou, Z. Wang, M. Ning, H. Jin, D. Guo, M. Cao, X. Fang, Y.Z.J. Li, Enhanced microwave absorption properties of co-doped SiC at elevated temperature. Appl. Surf. Sci. 445, 383–390 (2018). https://doi.org/10.1016/j.apsusc.2018.03.203

    Article  CAS  Google Scholar 

  15. S. Singh, A. Kumar, S.A.D. Singh, Synthesis and tunable microwave absorption characteristics of flower-like Ni/SiC composites. J. Magn. Magn. Mater. (2020). https://doi.org/10.1016/j.jmmm.2020.166616

    Article  Google Scholar 

  16. T. Han, R. Luo, G.C.L. Wang, Effect of SiC nanowires on the high-temperature microwave absorption properties of SiCf/SiC composites. J. Eur. Ceram. Soc. 39, 1743–1756 (2019). https://doi.org/10.1016/j.jeurceramsoc.2019.01.018

    Article  CAS  Google Scholar 

  17. P. Wang, P.-A. Liu, S. Ye, Preparation and microwave absorption properties of Ni(Co/Zn/Cu)Fe2O4/SiC@SiO2 composites. Rare Met. 38, 59–63 (2016). https://doi.org/10.1007/s12598-016-0752-1

    Article  CAS  Google Scholar 

  18. M.H. Li, X. Li, X.K. Lu, W.J. Zhu, H.L. Xu, J.M. Xue, F. Ye, Y.S. Liu, X.M. Fan, L.F. Cheng, A sheath-core shaped ZrO2–SiC/SiO2 fiber felt with continuously distributed SiC for broad-band electromagnetic absorption. Chem. Eng. J. 419, 129414 (2021). https://doi.org/10.1016/j.cej.2021.129414

    Article  CAS  Google Scholar 

  19. H. Yang, M. Cao, Y. Li, H. Shi, Z. Hou, X. Fang, H. Jin, W.W.J. Yuan, Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2, 214–219 (2014). https://doi.org/10.1002/adom.201300439

    Article  CAS  Google Scholar 

  20. M.A.A. MohdAbdah, N.H.N. Azman, S.K.Y. Sulaiman, Review of the use of transition-metal-oxide and conducting polymer-based fibres for high-performance supercapacitors. Mater. Des. 186, 1 (2020). https://doi.org/10.1016/j.matdes.2019.108199

  21. X. Su, J. Wang, X. Zhang, Z. Liu, W. Dai, W.C.B. Zhang, Construction of sandwich-like NiCo2O4/graphite nanosheets/NiCo2O4 heterostructures for a tunable microwave absorber. Ceram. Int 46, 19293–19301 (2020). https://doi.org/10.1016/j.ceramint.2020.04.269

    Article  CAS  Google Scholar 

  22. M. Zhou, F. Lu, B. Chen, X. Zhu, X. Shen, W. Xia, H. HeX, Zeng, Thickness dependent complex permittivity and microwave absorption of NiCo2O4 nanoflakes. Mater. Lett. 159, 498–501 (2015). https://doi.org/10.1016/j.matlet.2015.08.053

    Article  CAS  Google Scholar 

  23. Q. Hu, R. Yang, Z. Mo, D. Lu, L. Yang, Z. He, H. Zhu, Z.T.X. Gui, Nitrogen-doped and Fe-filled CNTs/NiCo2O4 porous sponge with tunable microwave absorption performance. Carbon. 153, 737–744 (2019). https://doi.org/10.1016/j.carbon.2019.07.077

    Article  CAS  Google Scholar 

  24. X. Su, J. Wang, X. Zhang, S. Huo, W. Chen, W.D.B. Zhang, Design of controlled-morphology NiCo2O4 with tunable and excellent microwave absorption performance. Ceram. Int. 46, 7833–7841 (2020). https://doi.org/10.1016/j.ceramint.2019.12.002

    Article  CAS  Google Scholar 

  25. L. Peng, S. Ye, J.S.J. Qu, Solution-phase synthesis of few-layer hexagonal antimonene nanosheets via anisotropic growth. Angew Chem. Int. Ed. Engl. 58, 9891–9896 (2019). https://doi.org/10.1002/anie.201900802

    Article  CAS  Google Scholar 

  26. G.W. Hong Sun, Z.-S. Wang, Co9Se8 nanosheets electrodes: drop-cast versus in situ growth. Chin. J. Chem. 35, 645–650 (2017). https://doi.org/10.1002/cjoc.201600411

    Article  CAS  Google Scholar 

  27. J. Lee, S.W. Kim, I. Kim, D.S.H.J. Choi, Growth of silicon nanosheets under diffusion-limited aggregation environments. Nanoscale Res. Lett. 10, 429 (2015). https://doi.org/10.1186/s11671-015-1138-2

    Article  CAS  Google Scholar 

  28. G. Zhou, Y. Yao, X. Zhao, X. Liu, B.S.A. Zhou, Band gap energies for white nanosheets/yellow nanoislands/purple nanorods of CeO2. RSC Adv. 6, 59370–59374 (2016). https://doi.org/10.1039/c6ra11553e

    Article  CAS  Google Scholar 

  29. B. Sun, P. Han, W. Zhao, Y.L.P. Chen, White-light-controlled magnetic and ferroelectric properties in multiferroic BiFeO3 square nanosheets. J. Phys. Chem. C 118, 18814–18819 (2014). https://doi.org/10.1021/jp5064885

    Article  CAS  Google Scholar 

  30. J. Xu, B. Feng, Y. Wang, Y. Qi, J.N.M. Chen, BiOCl decorated NaNbO3 nanocubes: a novel p–n heterojunction photocatalyst with improved activity for ofloxacin degradation. Front. Chem. 6, 393 (2018). https://doi.org/10.3389/fchem.2018.00393

    Article  CAS  Google Scholar 

  31. J.F. Marco, J.R. Gancedo, M. Gracia, J.L. Gautier, E.R.Ã.F.J. Berry, Characterization of the nickel cobaltite, NiCo2O4, prepared by several methods: an XRD, XANES, EXAFS, and XPS study. J. Solid State Chem. 153, 74–81 (2000). https://doi.org/10.1006/jssc.2000.8749

  32. O.V.M.Y.E. Roginskaya, E.N. Lubnin, Y.E. Ulitina, G.V. Lopukhova, S. Trasatti, Characterization of bulk and surface composition of CoxNi1-xOy mixed oxides for electrocatalysis. Langmuir 13, 4621–4627 (1996). https://doi.org/10.1021/la9609128

    Article  Google Scholar 

  33. A.F.V.M. Jimnez, J.P. Espinos, A.R. Gonzadez-Elipe, The state of the oxygen at the surface of polycrystalline cobalt oxide. J. Electron. Spectrosc. Relat. Phenom. 71, 61–71 (1994). https://doi.org/10.1016/0368-2048(94)02238-0

    Article  Google Scholar 

  34. M.S. Kolathodi, M.P.T.S. Natarajan, Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors. J. Mater. Chem. A 3, 7513–7522 (2015). https://doi.org/10.1039/c4ta07075e

    Article  CAS  Google Scholar 

  35. W. Yu, B.L.X. Zhao, M.O.F.-D. Ultralight, Ni3S2@N, S-codoped graphene aerogels for high-performance microwave absorption. Nanomaterials (Basel) 1, 2 (2022). https://doi.org/10.3390/nano12040655

    Article  CAS  Google Scholar 

  36. J. Wang, H. Zhang, M.R. Hunt, A. Charles, J. Tang, O. Bretcanu, D. Walker, K.T. Hassan, Y. Sun, L. Siller, Synthesis and characterisation of reduced graphene oxide/bismuth composite for electrodes in electrochemical energy storage devices. ChemSusChem 10, 363–371 (2017). https://doi.org/10.1002/cssc.201601553

    Article  CAS  Google Scholar 

  37. S. Gao, J. Feng, G.S.W.B.L. Liang, Ultra-high electromagnetic absorption property of one-dimensional carbon-supported Ni/Mo2C and polyvinylidene fluoride. Front. Chem. 7, 427 (2019). https://doi.org/10.3389/fchem.2019.00427

    Article  CAS  Google Scholar 

  38. H. Kang, L. Han, S. Chen, S. Xie, M. Li, Q.F.S. He, Research progress on two-dimensional layered MXene/elastomer nanocomposites. Polymers (Basel) 1, 4 (2022). https://doi.org/10.3390/polym14194094

    Article  CAS  Google Scholar 

  39. L. Ma, L. Yan, A.H. LuY, Ding, Effect of re promoter on the structure and catalytic performance of Ni–Re/Al2O3 catalysts for the reductive amination of monoethanolamine. RSC Adv. 8, 8152–8163 (2018). https://doi.org/10.1039/c7ra12891f

    Article  CAS  Google Scholar 

  40. D. Tang, L. Lu, Z. Luo, B. Yang, J. Ke, W. Lei, H. Zhen, Y. Zhuang, J. Sun, K. Chen, J. Sun, Heteroatom-doped hierarchically porous biochar for supercapacitor application and phenol pollutant remediation. Nanomaterials (Basel) (2022). https://doi.org/10.3390/nano12152586

    Article  Google Scholar 

  41. R. Shao, F. Wang, S. Yang, J.J.G. Li, Preparation of hollow porous carbon nanofibers and their performance and mechanism of broadband microwave absorption. Materials (Basel) (2022). https://doi.org/10.3390/ma15207273

    Article  Google Scholar 

  42. H. Breiss, A. El Assal, R. Benzerga, C.M.A. Sharaiha, Long carbon fibers for microwave absorption: effect of fiber length on absorption frequency band. Micromachines (Basel) 1, 1 (2020). https://doi.org/10.3390/mi11121081

    Article  Google Scholar 

  43. J. Li, D. Zhang, H. Qi, G. Wang, J. Tang, G. Tian, A. Liu, H. Yue, Y. Yu, S. Feng, Economical synthesis of composites of FeNi alloy nanoparticles evenly dispersed in two-dimensional reduced graphene oxide as thin and effective electromagnetic wave absorbers. RSC Adv. 8, 8393–8401 (2018). https://doi.org/10.1039/c7ra13737k

    Article  CAS  Google Scholar 

  44. H. Wei, L.C.D. Shchukin, Effect of porous structure on the microwave absorption capacity of soft magnetic Connecting Network Ni/Al2O3/Ni Film. Materials (Basel) (2020). https://doi.org/10.3390/ma13071764

    Article  Google Scholar 

  45. F. Wang, Q. Zhou, Z. Zhang, Y. Gu, J.Z.K. Jiang, Microwave absorption properties of carbon black-carbonyl iron/polylactic acid composite filament for fused deposition modeling. Materials (Basel) (2022). https://doi.org/10.3390/ma15155455

    Article  Google Scholar 

  46. M. Zhang, Z. Jiang, X. Lv, X. Zhang, Y. Zhang, J. Zhang, L.Z.C. Gong, Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D (2020). https://doi.org/10.1088/1361-6463/ab48a7

  47. Q. Zeng, P. Chen, Q. Yu, H.R. Chu, X.H. Xiong, D.W. Xu, Q. Wang, Self-assembly of ternary hollow microspheres with strong wideband microwave absorption and controllable microwave absorption properties. Sci. Rep. 7, 8388 (2017). https://doi.org/10.1038/s41598-017-08293-3

    Article  CAS  Google Scholar 

  48. Y. Liang, Y. Yuan, Y. Huang, Y. Wang, S. Wei, B. Wang, W. Huang, W. Xin, X. Wang, Effect of ball milling on the absorption properties of Fe3O4. Materials (Basel) 1, 3 (2020). https://doi.org/10.3390/ma13040883

    Article  CAS  Google Scholar 

  49. C. Fu, D. He, Y.W.X. Zhao, Facile synthesis of porous Fe3O4@C core/shell nanorod/graphene for improving microwave absorption properties. RSC Adv. 8, 15358–15365 (2018). https://doi.org/10.1039/c8ra01838c

    Article  CAS  Google Scholar 

  50. H. Zhao, F. Wang, L. Cui, X. Xu, X.H.Y. Du, Composition optimization and microstructure design in MOFs-derived magnetic carbon-based microwave absorbers: a review. Nanomicro Lett. 13, 208 (2021). https://doi.org/10.1007/s40820-021-00734-z

    Article  CAS  Google Scholar 

  51. H. Shen, Z. Wang, C. Wang, P. Zou, Z. Hou, C. Xu, H. Wu, Defect- and interface-induced dielectric loss in ZnFe2O4/ZnO/C electromagnetic wave absorber. Nanomaterials (Basel) (2022). https://doi.org/10.3390/nano12162871

    Article  Google Scholar 

  52. H.Y. Wang, X.B. Sun, S.H. Yang, P.Y. Zhao, X.J. Zhang, G.S. Wang, Y. Huang, 3D ultralight hollow NiCo compound@MXene composites for tunable and high-efficient microwave absorption. Nanomicro Lett. 13, 206 (2021). https://doi.org/10.1007/s40820-021-00727-y

    Article  CAS  Google Scholar 

  53. P. Yan, Y. Shen, X.D.J. Chong, Microwave absorption properties of magnetite particles extracted from nickel slag. Materials (Basel) (2020). https://doi.org/10.3390/ma13092162

    Article  Google Scholar 

  54. W. Feng, H. Luo, Y. Wang, S. Zeng, Y. Tan, L. Deng, X. Zhou et al., Mxenes derived laminated and magnetic composites with excellent microwave absorbing performance. Sci. Rep. 9, 3957 (2019). https://doi.org/10.1038/s41598-019-40336-9

    Article  CAS  Google Scholar 

  55. X. Hao, MOF-derived Co@C nanoparticle anchored aramid nanofiber (ANF) aerogel for superior microwave absorption capacity. RSC Adv. 11, 26319–26325 (2021). https://doi.org/10.1039/d1ra04725f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Natural Science Foundation of China (Grant No. 51472072) and Hebei Natural Science Foundation (Grant Number E2022209067).

Funding

The work was supported by National Natural Science Foundation of China (Grant Numbers 51472072), National Science Foundation of Hebei Province (Grant Numbers E2022209076).

Author information

Authors and Affiliations

Authors

Contributions

CL: conceptualization, synthesis, performance testing, writing-original draft. YF: synthesis, performance testing, writing-review. YC: investigation, methodology, synthesis. FZ: investigation, synthesis, performance testing. DL: formal analysis, performance testing. PL: methodology, performance testing. YW: resources, formal analysis. HW: idea and design of this research, Writing-original draft & review & editing. JB: resources, formal analysis.

Corresponding author

Correspondence to Yi Cui.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human and/or animals participants

This article does not contain any studies with human participants performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 111.8 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Feng, Y., Cui, Y. et al. Synthesis and microwave absorption properties of NiCo2O4 nanoflakes/SiC fibers composites. J Mater Sci: Mater Electron 34, 1404 (2023). https://doi.org/10.1007/s10854-023-10828-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10828-6

Navigation