Skip to main content
Log in

Microwave absorption performance of Fe@Fe4N/amorphous carbon submicron fibers: critical role of the interface

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Two kinds of Fe/amorphous carbon (a-C) submicron fibers were prepared by electrospinning using polyvinylpyrrolidone (PVP) and polyacrylonitrile (PAN) as precursor polymer, followed by carbonization under the same conditions. Contributed to the different reaction mechanisms during the annealing process, different phases namely graphite carbon (g-C) and Fe4N formed at the interface between the Fe nanoparticles and the a-C matrix. Electromagnetic absorption properties have shown that the Fe@Fe4N submicron fibers have superior absorption performance than the Fe@g-C ones. The minimal reflection loss (RL) value of the former is − 39.8 dB at 5.4 GHz with the absorber thickness of 5.0 mm, and the effective absorption bandwidth (RL ≤  − 10 dB) can reach 5.0 GHz when the absorber thickness is 2.5 mm. By contrast, the Fe@g-C submicron fibers have little absorption. The attenuation constant, impedance matching coefficient, complex permittivity and complex permeability were investigated in detail. The microstructure and composition were explored various superior tools. The results revealed that the interface Fe4N has a critical role in affecting the magnetic loss and dielectric loss, which brings better impedance matching and relatively low dielectric loss. Therefore, the Fe@Fe4N submicron fibers have excellent microwave absorbing properties.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Wang L, Huang Y, Sun X, Huang H, Liu P, Zong M (2014) Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6:3157–3164. https://doi.org/10.1039/C3NR05313J

    Article  CAS  Google Scholar 

  2. Liu Q, Cao Q, Bi H, Liang C, Yuan K, She W (2016) CoNi@SiO2@TiO2 and CoNi@air@TiO2 microspheres with strong wideband microwave absorption. Adv Mater 28:486–490. https://doi.org/10.1002/adma.201503149

    Article  CAS  Google Scholar 

  3. Guo Z, Peitao X, Feng D, Biao H, Jing L, Runhua F (2018) Bio-gel derived Nickel/Carbon nanocomposites with enhanced microwave absorption. J Mater Chem C 6:8812–8822. https://doi.org/10.1039/C8TC02127A

    Article  Google Scholar 

  4. Luo J, Zhang K, Cheng M, Gu M, Sun X (2020) MoS2 spheres decorated on hollow porous ZnO microspheres with strong wideband microwave absorption. Chem Eng J 380:122625–122634. https://doi.org/10.1016/j.cej.2019.122625

    Article  CAS  Google Scholar 

  5. Liu T, Pang Y, Zhu M, Kobayashi S (2014) Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6:2447–2454. https://doi.org/10.1039/c3nr05238a

    Article  CAS  Google Scholar 

  6. Huang Y, Ji J, Chen Y, Li X, He J, Cheng X (2019) Broadband microwave absorption of Fe3O4BaTiO3 composites enhanced by interfacial polarization and impedance matching. Compos B Eng 163:598–605. https://doi.org/10.1016/j.compositesb.2019.01.008

    Article  CAS  Google Scholar 

  7. Xian J, Xiao X, Deng L, Wei T, Dou S (2018) Heterostructured nanorings of Fe-Fe3O4@c hybrid with enhanced microwave absorption performance. ACS Appl Mater Inter 10:9369–9378. https://doi.org/10.1021/acsami.7b18324

    Article  CAS  Google Scholar 

  8. Deng J, Li S, Zhou Y, Liang L, Zhao B, Zhang X (2017) Enhancing the microwave absorption properties of amorphous CoO nanosheet-coated Co (hexagonal and cubic phases) through interfacial polarizations. J Colloid Interface Sci 509:406–413. https://doi.org/10.1016/j.jcis.2017.09.029

    Article  CAS  Google Scholar 

  9. Wang P, Cheng L, Zhang Y, Zhang L (2017) Synthesis of SiC nanofibers with superior electromagnetic wave absorption performance by electrospinning. J Alloy Compd 716:306–320. https://doi.org/10.1016/j.jallcom.2017.05.059

    Article  CAS  Google Scholar 

  10. Cao W, Wang X, Yuan J, Wang W, Cao M (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3:10017–10022. https://doi.org/10.1039/C5TC02185E

    Article  CAS  Google Scholar 

  11. Li G, Xie T, Yang S, Jin J, Jiang J (2012) Microwave absorption enhancement of porous carbon fibers compared with carbon nanofibers. The Journal of Physical Chemistry C 116:9196–9201. https://doi.org/10.1021/jp300050u

    Article  CAS  Google Scholar 

  12. Sun H, Che R, You X, Jiang Y, Peng H (2014) Cross-Stacking aligned Carbon-Nanotube films to tune microwave absorption frequencies and increase absorption intensities. Adv Mater 26:8120–8125. https://doi.org/10.1002/adma.201403735

    Article  CAS  Google Scholar 

  13. Wang JC, Xiang CS, Liu Q, Pan YB, Guo JK (2008) Ordered mesoporous Carbon/Fused silica composites. Adv Funct Mater 18:2995–3002. https://doi.org/10.1002/adfm.200701406

    Article  CAS  Google Scholar 

  14. Sun D, Zou Q, Wang Y, Wang Y, Jiang W, Li F (2014) Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6:6557–6562. https://doi.org/10.1039/C3NR06797A

    Article  CAS  Google Scholar 

  15. Tong Wu, Yun L, Xiang Z (2016) Facile hydrothermal synthesis of Fe3O4/C core-shell nanorings for efficient low-frequency microwave absorption. ACS Appl Mater Inter 8:7370–7380. https://doi.org/10.1021/acsami.6b00264

    Article  CAS  Google Scholar 

  16. Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z (2017) Electrospinning of Fe/SiC hybrid fibers for highly efficient microwave absorption. ACS Appl Mater Inter 9:7265–7271. https://doi.org/10.1021/acsami.6b15721

    Article  CAS  Google Scholar 

  17. Li N, Huang G, Xiao H, Feng Q, Fu S (2019) Investigations on structure-dependent microwave absorption performance of nano-Fe3O4 coated carbon-based absorbers. Carbon 144:216–227. https://doi.org/10.1016/j.carbon.2018.12.036

    Article  CAS  Google Scholar 

  18. Du Y, Liu W, Qiang R, Wang Y, Han X, Ma J (2014) Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites. ACS Appl Mater Inter 6:12997–13006. https://doi.org/10.1021/am502910d

    Article  CAS  Google Scholar 

  19. Liang B, Wang S, Kuang D (2018) Facile synthesis and excellent microwave absorption properties of FeCo–C Core–Shell nanoparticles. Nanotechnology 29:85604–85614. https://doi.org/10.1088/1361-6528/aaa52f

    Article  CAS  Google Scholar 

  20. Li D, Guo K, Wang F, Wu Z, Zhong B, Zuo S (2019) Enhanced microwave absorption properties in C band of Ni/C porous nanofibers prepared by electrospinning. J Alloy Compd 800:294–304. https://doi.org/10.1016/j.jallcom.2019.05.284

    Article  CAS  Google Scholar 

  21. He N, Yang X, Ji R, Fu S, Tong G, Wu W (2020) Polarization and matching modulation of peapod-like Cu/C nanowires to improve microwave absorption. J Alloy Compd 822:153633–153642. https://doi.org/10.1016/j.jallcom.2019.153633

    Article  CAS  Google Scholar 

  22. Zeng S, Yao Y, Feng W, Zhang H, Peng S (2020) Constructing a 3D interconnected Fe@graphitic carbon structure for a highly efficient microwave absorber. J Mate Chem C 8:1326–1334. https://doi.org/10.1039/c9tc05615g

    Article  CAS  Google Scholar 

  23. Niu Y, Li X, Dong W, Zhang C, Zhao K, Wang F (2020) Synthesis of N-doped carbon with embedded Fe/Fe3C particles for microwave absorption. J Mater Sci 55:11970–11983. https://doi.org/10.1007/s10853-020-04918-7

    Article  CAS  Google Scholar 

  24. Sun Y, Wang N, Yu H, Jiang X (2020) Metal–organic framework-based Fe/C@Co3O4 core–shell nanocomposites with outstanding microwave absorption properties in low frequencies. J Mater Sci 55:7304–7320. https://doi.org/10.1007/s10853-020-04521-w

    Article  CAS  Google Scholar 

  25. Hou Y, Cheng L, Zhang Y, Yang Y, Deng C, Yang Z (2017) SiC nanofiber mat: a broadband microwave absorber and the alignment effect. ACS Appl Mater Inter 9:43072–43080. https://doi.org/10.1021/acsami.7b13634

    Article  CAS  Google Scholar 

  26. Wang Z, Zhao L, Wang P, Guo L, Yu J (2016) Low material density and high microwave-absorption performance of hollow strontium ferrite nanofibers prepared via coaxial electrospinning. J Alloy Compd 687:541–547. https://doi.org/10.1016/j.jallcom.2016.06.118

    Article  CAS  Google Scholar 

  27. Hu Y, Jiang R, Zhang J, Zhang C, Cui G (2018) Synthesis and properties of magnetic multi-walled carbon nanotubes loaded with Fe4N nanoparticles. J Mater Sci Technol 34:886–890. https://doi.org/10.1016/j.jmst.2017.02.007

    Article  Google Scholar 

  28. Yu M, Xu Y, Mao Q, Li F, Wang C (2016) Electromagnetic and absorption properties of nano-sized and micro-sized Fe4N particles. J Alloy Compd 656:362–367. https://doi.org/10.1016/j.jallcom.2015.10.005

    Article  CAS  Google Scholar 

  29. Nicolson AM, Ross GF (1970) Measurement of the intrinsic properties of materials by time-domain techniques. Ieee T Instrum Measure 19:377–382. https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  30. Xiang J, Zhang X, Ye Q, Li J, Shen X (2014) Synthesis and characterization of FeCo/C hybrid nanofibers with high performance of microwave absorption. Mater Res Bull 60:589–595. https://doi.org/10.1016/j.materresbull.2014.09.032

    Article  CAS  Google Scholar 

  31. Sill TJ, von Recum HA (2008) Electrospinning: applications in drug delivery and tissue engineering. Biomaterials 29:1989–2006. https://doi.org/10.1016/j.biomaterials.2008.01.011

    Article  CAS  Google Scholar 

  32. Zhang T, Huang D, Ying Y, Kang F, Gu J (2013) Fe3O4/carbon composite nanofiber absorber with enhanced microwave absorption performance. Mater Sci Eng 178:1–9. https://doi.org/10.1016/j.mseb.2012.06.005

    Article  CAS  Google Scholar 

  33. Qiang R, Du Y, Zhao H, Wang Y, Tian C, Li Z (2015) Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption. J Mater Chem A 3:13426–13434. https://doi.org/10.1039/C5TA01457C

    Article  CAS  Google Scholar 

  34. Sun JC, He Z, Dong W, Wu W, Tong G (2019) Broadband and strong microwave absorption of Fe/Fe3C/C core–shell spherical chains enhanced by dual dielectric relaxation and dual magnetic resonances. J Alloy Compd 782:193–202. https://doi.org/10.1016/j.jallcom.2018.12.198

    Article  CAS  Google Scholar 

  35. Yang G, Gaind P, Pandey J (2012) Chemical vapor-deposited carbon nanofibers on carbon fabric for supercapacitor electrode applications. Nanoscale Res Lett 7:1–8. https://doi.org/10.1186/1556-276x-7-651

    Article  Google Scholar 

  36. Li T, Li M, Gu Y, Wang S, Li Q, Zhang Z (2018) Mechanical enhancement effect of the interlayer hybrid CNT film/carbon fiber/epoxy composite. Compos Sci Technol 166:176–182. https://doi.org/10.1016/j.compscitech.2018.02.007

    Article  CAS  Google Scholar 

  37. Li G, Wang L, Li W, Xu Y (2015) Mesoporous Fe/C and Core–Shell Fe–Fe3C@C composites as efficient microwave absorbents. Microporous Mesoporous Mater 211:97–104. https://doi.org/10.1016/j.micromeso.2015.02.054

    Article  CAS  Google Scholar 

  38. Yin Y, Liu X, Wei X, Yu R, Shui J (2016) Porous CNTs/Co composite derived from zeolitic imidazolate framework: a lightweight, ultrathin and highly efficient electromagnetic wave absorber. ACS Appl Mater Interfaces 8:34686–34698. https://doi.org/10.1021/acsami.6b12178

    Article  CAS  Google Scholar 

  39. Carp O, Patron L, Diamandescu L, Reller A (2002) Thermal decomposition study of the coordination compound [Fe(urea)6](NO3)3. Thermochim Acta 390:169–177. https://doi.org/10.1016/S0040-6031(02)00085-0

    Article  CAS  Google Scholar 

  40. Miles PA, Westphal WB, Von Hippel A (1957) Dielectric spectroscopy of ferromagnetic semiconductors. Rev Mod Phys 29:279–307. https://doi.org/10.1103/RevModPhys.29.279

    Article  CAS  Google Scholar 

  41. Han M, Yin X, Li X, Anasori B, Zhang L, Cheng L (2017) Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl Mater Inter 9:20038–20045. https://doi.org/10.1021/acsami.7b04602

    Article  CAS  Google Scholar 

  42. Ding D, Wang Y, Li X, Qiang R, Xu P, Chu W (2017) Rational design of core–shell Co@C microspheres for high-performance microwave absorption. Carbon 111:722–732. https://doi.org/10.1016/j.carbon.2016.10.059

    Article  CAS  Google Scholar 

  43. Wu N, Qiao J, Liu J, Du W, Xu D, Liu W (2017) Strengthened electromagnetic absorption performance derived from synergistic effect of carbon nanotube hybrid with Co@C beads. Adv Compos Hybrid Mater 1:149–159. https://doi.org/10.1007/s42114-017-0008-z

    Article  CAS  Google Scholar 

  44. Li X, Feng J, Du Y, Bai J, Fan H, Zhang H (2015) One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J Mater Chem A 3:5535–5546. https://doi.org/10.1039/c4ta05718j

    Article  CAS  Google Scholar 

  45. Yuan X, Cheng L, Zhang L (2016) Electromagnetic wave absorbing properties of SiC/SiO2 composites with ordered inter-filled structure. J Alloy Compd 680:604–611. https://doi.org/10.1016/j.jallcom.2016.03.309

    Article  CAS  Google Scholar 

  46. Fang Y, Qiang S, Zhang Z, Wei L, Li H (2018) Direct growth of Edge-Rich graphene with tunable dielectric properties in porous Si3N4 ceramic for broadband High-Performance microwave absorption. Adv Funct Mater 28:1707205. https://doi.org/10.1002/adfm.201707205

    Article  CAS  Google Scholar 

  47. Luo J, Yue L, Ji H, Zhang K, Yu N (2019) Investigation on the optimization, design and microwave absorption properties of BaTb0.2Eu0.2Fe11.6O19/PANI decorated on reduced graphene oxide nanocomposites. J Mater Sci 54:6332–6346. https://doi.org/10.1007/s10853-018-03305-7

    Article  CAS  Google Scholar 

  48. Xu D, Qiao J, Wu N, Liu W, Wang F, Lv L (2019) Facile synthesis of Three-Dimensional porous Co/MnO composites derived from bimetal oxides for highly efficient electromagnetic wave absorption. ACS Sustain Chem Eng 7:8687–8695. https://doi.org/10.1021/acssuschemeng.9b00529

    Article  CAS  Google Scholar 

  49. Li N, Huang GW, Li Y, Xiao HM, Fu SY (2016) Enhanced microwave absorption performance of coated carbon nanotubes by optimizing the Fe3O4 nanocoating structure. ACS Appl Mater Interfaces 9:2973–2983. https://doi.org/10.1021/acsami.8b07682

    Article  CAS  Google Scholar 

  50. Meng F, Wang H, Wei CZ, Li T, Li C (2018) Generation of graphene-based aerogel microspheres for broadband and tunable high-performance microwave absorption by electrospinning-freeze drying process. Nano Res 11:2847–2861. https://doi.org/10.1007/s12274-017-1915-6

    Article  CAS  Google Scholar 

  51. Sun X, He J, Li G, Tang J, Wang T, Guo Y (2013) Laminated magnetic graphene with enhanced electromagnetic wave absorption properties. J Mater Chem C 1:765–777. https://doi.org/10.1039/C2TC00159D

    Article  CAS  Google Scholar 

  52. Xiang J, Li J, Zhang X, Ye Q, Xu J, Shen X (2014) Magnetic carbon nanofibers containing uniformly dispersed Fe/Co/Ni nanoparticles as stable and high-performance electromagnetic wave absorbers. J Mater Chem A 2:16905–16914. https://doi.org/10.1039/c4ta03732d

    Article  CAS  Google Scholar 

  53. Anahory Y, Embon L, Li CJ, Banerjee S, Meltzer A, Naren HR (2016) Emergent nanoscale superparamagnetism at oxide interfaces. Nat Commun 7:12566. https://doi.org/10.1038/ncomms12566

    Article  CAS  Google Scholar 

Download references

Funding

This work is financially supported by the Fundamental Research Funds of Shandong University (Grant Number 2018JCG05), and the National Natural Science Foundation of China (Grant Number 51573087).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijie Yu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling Editor: Dale Huber.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 323 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Yu, M., Gao, X. et al. Microwave absorption performance of Fe@Fe4N/amorphous carbon submicron fibers: critical role of the interface. J Mater Sci 55, 16954–16968 (2020). https://doi.org/10.1007/s10853-020-05189-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05189-y

Navigation